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ABSTRACT 
Various classifiers based on the machine learning techniques have 
been widely used in security applications. Meanwhile, they also 
became an attack target of adversaries. Many existing studies 
have paid much attention to the evasion attacks on the online 
classifiers and discussed defensive methods. However, the 
security of the classifiers deployed in the client environment has 
not got the attention it deserves. Besides, earlier studies have only 
concentrated on the experimental classifiers developed for 
research purposes only. The security of widely-used commercial 
classifiers still remains unclear. In this paper, we use the Google’s 
phishing pages filter (GPPF), a classifier deployed in the Chrome 
browser and with over one billion users, as a case to investigate 
the security challenges for the client-side classifiers. A new attack 
methodology targeted to client-side classifiers, called classifiers 
cracking, is presented. According to the methodology, we 
successfully crack the classification model of GPPF and extract 
sufficient knowledge from it for performing effective evasion 
attacks, including the classification algorithm, scoring rules and 
features, etc. Most importantly, we completely reverse engineer 
84.8% scoring rules, covering most of high-weighted rules. Based 
on the cracked information, we perform two kinds of evasion 
attacks to GPPF, using 100 real phishing pages as the target of 
evaluation. The experiments show that all the phishing pages 
(100%) can be easily manipulated to bypass the detection of 
GPPF. Our study demonstrates that the existing client-side 
classifiers are very vulnerable to classifiers cracking attacks. 

Categories and Subject Descriptors 
D.4.6 [Security and Protection]: Invasive software; I.2 
[Artificial Intelligence]: Learning 

General Terms 
Security 

Keywords 
Phishing Detection, Machine Learning, Classifiers, Cracking, 
Collision Attacks, Evasion Attacks 

1. INTRODUCTION 
Machine learning techniques have been commonly adopted in 
security applications. Various classifiers were trained for 
detecting malicious web pages [23], spam [53], phishing [56], 
malware [47], etc. Not surprisingly, the classifiers themselves also 
became an attack target of adversaries. The adversary can attempt 
to fool classifiers by purposely modifying their behaviors. For 
example, a spammer can manipulate the spam mails to evade 
spam filters by inserting some good words indicative of legitimate 

mails or misspelling bad words indicative of spam mails [41]. 
This requires the classifier can resist potential attacks. 

Many existing studies have paid attention to the security of 
classifiers. According to the taxonomy of attacks against 
classifiers proposed in [8][9][32], the influences of attacks on the 
classifier are categorized into two types: causative attacks 
interfere training process with control over training data to 
downgrade the performance of the classifier, and exploratory 
attacks exploit knowledge of the trained classifier to cause 
misclassifications but do not affect training.  

In causative attacks, the adversary has the opportunity to inject 
(poison) specially crafted samples during the collection of 
training samples and cause the learner to misclassify security 
violations (false negatives), such as [16][17][18][19]. For example, 
a poisoning attack method against support vector machines (SVM) 
is presented in [17]. It was demonstrated that the SVM’s 
classification accuracy can be largely impacted by feeding 
malicious training data. Fortunately, in practice, the adversary 
doesn’t always have an opportunity to effectively control over 
training data. In fact, the training process of most classifiers, 
especially the ones deployed in commercial products, is not open 
to the public. The adversary needs to fight with trained classifiers. 
For example, according to described in [56], the Google’s 
phishing pages classifier is developed in an offline training 
process. The training dataset consists of millions of samples from 
various domains. In this case, it is very difficult, if not impossible, 
for an adversary to craft enough amounts of malicious inputs to 
effectively poison the training process. 

On the other hand, exploratory attacks attempt to learn enough 
knowledge about the trained classifiers and find a way to evade 
the classification. Some existing studies about evasion attacks 
made the unrealistic assumption that the adversary has perfect 
knowledge of classification model [26]. In practice, the adversary 
often needs to send some probes (e.g., membership queries) to the 
classifier and observe its response to deduce desirable knowledge 
[23], perform an adversarial learning to get sufficient knowledge 
about the target classifier to construct evasion attacks [42], or 
reconstruct an imitation of the target classifier based on the 
available public information (e.g., training data) to gain key 
knowledge [51]. In theory, the success of evasion attacks heavily 
depends on the amount of knowledge possessed by the adversary. 
Especially, the knowledge of features contributes most to the 
success of the attacks as discussed in [51]. Accordingly, some 
mitigation techniques have been proposed to against evasion 
attacks by reducing the leakage of exploitable knowledge as much 
as possible [8][11] or making the learning method more robust to 
evasion [15][36]. 

However, existing studies often overlooked an important fact that 
some classifiers are deployed in the client environment fully 
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controlled by users (client-side classifier for short) rather than in a 
remote server. For example, the classifiers for filtering spam 
emails and phishing pages are often embedded in the email clients 
or web browsers respectively. In the scenario, the classifiers will 
face more serious security challenges. Instead of collecting the 
information via indirectly observations, the adversaries can freely 
and directly analyze the implementation and configuration of the 
classifiers to evade them. Consequently, it should be investigated 
carefully that how an adversary can learn the exploitable 
knowledge from a classifier deployed in the user clients and how 
effective the knowledge are exploited in launching an evasion 
attack. Additionally, the existing studies generally focused on the 
experimental classifiers developed for research purposes only. 
The security of widely-used classifiers in commercial products 
still remains unclear. From a practical point of view, evaluating 
the security of commercial classifiers is more significant for 
protecting end users from evasion attacks. 

To this end, in this study, we investigate the security challenges 
for the client-side classifiers via a case study on the Google’s 
phishing pages filter (GPPF), a very widely-used classifier for 
automatically detecting unknown phishing pages. The classifier is 
completely integrated within the Chrome browser and invoked for 
every web page visited by users to determine whether it is 
phishing or not. Due to the popularity of Chrome, there are over 
one billion users using GPPF to against potential phishing attacks 
[1]. It is probably the most widely-used classifier as we know. If 
the adversary can easily evade it, countless users will be exposed 
to out-of-control phishing attacks. 

In this paper, we demonstrate a practical and effective attack 
methodology, named classifiers cracking, in which various 
reverse engineering techniques are leveraged to extract sufficient 
knowledge from the client-side classifier for launching evasion 
attacks. Specifically, by performing some static and dynamic 
analysis on the implementation of Chromium (the development 
version of Chrome), we successfully extract the classification 
model of GPPF from it, mainly involving the classification 
algorithm, 2,130 scoring rules and corresponding weights, and 
1,009 hashed features composing the scoring rules. With the help 
of some public datasets (e.g., large corpora), we then launch a 
collision attack to the hashed features and decrypt 815 (80.8%) of 
them  only within a dozen of hours. As a result, we can 
completely reverse engineer 1807 (84.8%) scoring rules, covering 
most of high-weighted rules. Additionally, 196 (9.2%) scoring 
rules  are partially cracked and can also be exploited to 
compromise the classification. There are only 127 (6.0%) rules  
surviving from the collision attack. 

Based on the extracted information, we design two kinds of 
evasion attacks, i.e., good features insertion and bad features 
elimination. The basic idea behind these attacks is to add or 
remove some features with remarkable contributions to GPPF 
scoring into or from the target phishing pages to reduce their 
phishing scores, making the computed scores lower than the 
positive threshold defined by GPPF. We evaluate the 
effectiveness of the attacks with  the 100 latest real phishing 
pages collected from PhishTank [2], a famous phishing URLs 
tracking site. The results show that we can easily manipulate all 
the phishing pages under the direction of the cracked knowledge, 
to make them successfully evade the detection of GPPF in the 
latest version of Chrome. 

We also analyze the weakness of existing defense techniques 
when applying them to client-side classifiers, and introduce a 
potential defense strategy from the viewpoint of against cracking. 
The main idea is to employ the machine learning method to 
construct the client-side classifier such that its features are not 
prone to be reverse engineered inherently.  

This paper makes the following main contributions. 

 We propose a new attack methodology, classifiers cracking, 
aiming at the client-side classifiers. The adversary can 
follow it to readily acquire exploitable knowledge from the 
target classifier to launch effective evasion attacks. 

 We successfully crack and evade the GPPF, a commercial 
classifier with over one billion users. It is demonstrated that 
the existing client-side classifiers are indeed vulnerable to 
classifiers cracking attacks. 

 We discuss a potential defense strategy against classifiers 
cracking. We believe that it can be employed to enhance the 
security of various client-side classifiers, not only GPPF. 

2. BACKGROUND 
2.1 Threat Model 
As shown in Figure 1(a), how to classify an instance in a server-
side classifier is often a black-box to the adversary. The adversary 
can only send some queries and analyze responses to learn the 
information about it. In many cases, this way is already enough to 
launch an evasion attack. The adversary can construct a 
malformed instance to fool the classifier based on the information 
learned in advance. 

Query 

Response

Knowledge

Server-side
Classifier

(a) Evading the server-side classifier

Client-side
Classifier

KnowledgeKnowledgeKnowledge

(b) Evading the client-side classifier 

Figure 1. Threats to classifiers. 
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However, when a classifier is deployed in the client-side 
computer, the situation may become worse. As shown in Figure 
1(b), for a client-side classifier, its operations are performed in a 
white-box. The adversary can leverage almost all kinds of 
analysis techniques, such as debugging, disassembling, code 
analysis, dynamic taint tracking, etc., to thoroughly analyze the 
target classifier. As a result, the adversary has an opportunity to 
get more comprehensive knowledge about the classifier to 
develop more sophisticated evasion attacks. The malformed 
instance can be applicable for all the users using the classifier. 
Besides, if the adversary gets perfect knowledge about the 
classifier, she can even reengineer a new classifier for commercial 
purposes. In this study, it is assumed that all the implementation 
and configuration of the client-side classifier are available for the 
adversary. The adversary can figure out the type of classification 
model, the classification algorithm and the feature extraction 
method by leveraging various techniques. Considering the 
advancement of modern analysis techniques, this assumption is 
reasonable. 

Some client-side classifiers, have introduced some defense 
techniques to prevent the adversary from learning crucial 
information. For example, GPPF employs the cryptography 
technique to protect the classification model. Unfortunately, it is 
proved to be ineffective to against classifier cracking (discussed 
in Section 3 and 4). 

2.2 Phishing and GPPF 
According to the latest report [3] of Anti-Phishing Working 
Group (APWG), phishing attacks remain widespread: the number 
of unique phishing reports submitted to APWG during Q4 of 2014 
was 197,252, and there is an increase of 18 percent from the 
163,333 received in Q3. To minimize the impact of phishing 
attacks, a variety of methods have been proposed to detect 
phishing pages, involving machine learning [39][52][56] or other 
techniques [24] [25] [27] [31] [33] [46] [57] [58]. 

Modern web browsers also provide detection tools to assist end 
users against phishing attacks. Safe Browsing, a service offered by 
Chrome, is aiming at providing not only blacklists of malicious 
URLs but also a trained classifier (GPPF) which automatically 
detects phishing pages as a countermeasure to the phishing 
problem [4]. In Chrome, Safe Browsing serves as a guard when a 
request comes, and the request URL will be checked before the 
content is allowed to begin loading. The URL is checked against 
two blacklists: malware and phishing. If the URL is matched with 
the blacklists, Chrome will block the request and jump to a 
warning page as shown in Figure 2. More importantly, for the 
URL that is not present in the blacklists, Chrome will further 
invoke GPPF to determine whether it is legitimate or phishing. In 
practice, the phishing blacklist needs to be updated constantly and 
users will be vulnerable to newly created phishing websites. 
GPPF acts as an indispensable role in protecting end users from 
unknown phishing pages. 

In fact, GPPF is the local version of a Google’s internal classifier. 
Google developed and trained a scalable machine learning 
classifier in its servers to detect phishing websites and use it to 
maintain Google’s phishing blacklist automatically [56]. Training 
the classifier is a constant offline process. The training process 
uses a sample of roughly ten million URLs analyzed over the past 
three months as the training dataset. The number of URLs from a 
single domain is also limit to 150 per week to prevent a single 
domain from having too much contribution to the classification 

model. Consequently, the adversaries don’t have an opportunity 
to alter the training dataset enough to make the trained classifier 
misclassify phishing pages as legitimate. However, to provide the 
real-time detection of unknown phishing pages, the trained 
classifier is also implemented as a part of Safe Browsing, i.e., 
GPPF. As an internal component of the Chrome browser, GPPF is 
completely deployed and running in the user environment. This 
actually allows the adversary to freely analyze its implementation 
and configurations to construct more sophisticated phishing 
attacks.  

According to the report of StatCounter [5], from Aug 2014 to Aug 
2015, Chrome shares an average of 48.6% market and is the most 
popular web browser. In May 2015, Google announced that 
Chrome has over one billion active users [1]. This means over one 
billion users’ web surfing are protected by GPPF. Note that if a 
phishing page can fool GPPF, it will have more chances to keep 
away from the Google’s phishing blacklist. Furthermore, the 
phishing blacklist provided by Google is also employed in Firefox 
and Safari browsers, as well as by Internet Service Providers 
(ISPs) [6]. We have reason to believe that the security breach of 
GPPF will potentially impact many more people besides just the 
users of Chrome. 

3. CRACKING GPPF 
There is very limited public information about the design and 
implementation of GPPF. We choose to directly analyze the 
development version of the Chrome browser, Chromium, to crack 
GPPF. The cracking includes two main steps: (1) extracting the 
classification model of GPPF from Chromium; and (2) decrypting 
the hashed features of the model. It needs to be mentioned that 
some sensitive details of the cracking are intentionally omitted 
to prevent them from being used for malicious purposes. 

3.1 Extracting the Classification Model 

3.1.1 Classification Algorithm 
The multi-process architecture that Chrome/Chromium adopts 
helps it be more robust. According to a very brief description in 
[4], we can know that Browser process will periodically fetch an 
updated model from Google’s server and send it to every Render 
process via an IPC channel. This allows the classification to be 
done in the Render process, which will score the request page to 
tell whether it is phishing or not. 

Figure 2. Phishing warning page. 
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We collect the execution traces of a phishing page and a 
legitimate page by monitoring the Render process of them in 
Chromium using a debug tool gdb. With a differential analysis of 
the traces, we find the GPPF’s scoring function ComputeScore(), 
which is a method of the Scorer class located in the file scorer.cc. 
Combining a dynamically backward tracking of the execution 
path started from ComputeScore() and a static analysis on the 
source code, we conclude the workflow of the classification. As 
shown in Figure 3, the classifier first extracts three kinds of page 
features from the current web page in order, i.e., URL, DOM and 
Term features. Second, the collected page features are hashed 
with the SHA-256 algorithm and sent to the function 
ComputeRuleScore() to compute the rule score for every scoring 
rule, along with the hashed model features. Third, ComputeScore() 
combines all the rule scores to generate a final score for the 
current page. Finally, the score is compared with a predefined 
threshold (fixed in 0.5). If the score is smaller than the threshold, 
the page will be regarded as legitimate; otherwise, it will be 
identified as a phishing page and be blocked. 

Based on the analysis of the scoring process, we find the GPPF is 
a logistic regression classifier, which uses the following two 
expressions to compute the phishing score for the target page. 
GPPF computes the total score for the page in log odds using the 
expression (1), and uses the normalization expression (2) to 
transform the score in log odds to the final score. 
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According to expression (1), the computing of the log odds of the 
page involves 2,130 scoring rules. Every rule has a weight, 
namely W1 ~ W2130. Except for the first rule, every rule consists of 
from one to four (i.e., ni for the ith rule) model features. Before 
computing the rule scores, the page features are first mapped to 
string forms, which will be hashed and compared with the model 
features. For every rule, the classifier creates a set of feature 
values (i.e., Vi, 1 ~ Vi, ni) for all matched model features. For 
Boolean feature, True is converted to 1.0 and False is converted 

to 0.0. The continuous features are scaled to be between 0.0 and 
1.0. If a model features of the rule is absent from the target page, 
its feature value will be set to 0.0. The score of the rule will be 
computed by combining the product of all the feature values and 
its weight. Finally, the log odds of the page will be produced by 
summing up all the rules scores.  

To crack the classification model, we need to recover the weight 
and model features for every scoring rule. The rule weight can be 
collected by debugging the Render process. We set a breakpoint 
in ComputeRuleScore(), in which an extractor written in gdb script 
is invoked to read the weight information from the rule objects in 
the memory and save them in a file. In a similar way, we also get 
the number of model features for every rule. However, the model 
features are not stored in plaintext; instead, they are hashed with 
the SHA-256 algorithm and hidden in some complex data 
structures. With carefully tracking of the scoring process, we 
locate their addresses and designed a gdb script to extract them 
from rule objects. Take two extracted rules as examples. As listed 
in Table 1, the rule R1494 is a negative rule with two features. This 
kind of rule is used to identify the good property indicative of 
legitimate pages. On the contrary, the rule R2050 is a positive rule, 
including only one feature. Some of the model features are 
present in different scoring rules. After eliminating duplicates, in 
total, we collect 1,009 individual hashed model features. The 
decryption of them will be described in Section 3.2. 

3.1.2  Model Features 
To decrypt hashed model features, we should first get clear about 
their semantics and how the page features are mapped to them. 
When computing the score, three kinds of page features will be 
mapped to corresponding model features in different ways. 

URL features. In practice, the phishers often obfuscate their 
URLs to hide suspicious addresses or confuse victims into 
believing they come from a trusted party. Based on the 
observation, in GPPF, some characteristics of the URL are 
employed to identify phishing pages. By analyzing the 
implementation of the classifier, we recover all seven kinds of 
properties of the URL being extracted as the page URL features, 
as shown in Table 2. The page URL features will be converted to 
string forms, which will be hashed and compared with the 
encrypted model URL features during computing scores. 

The page URL features can be categorized into two groups. For 
one of the first group of features (the first three in Table 2), if it is 
present in the URL, a hashed predefined string will be taken as its 
corresponding model feature. Take the first page URL feature as 
an example. If the hostname part of the URL is a numeric IP 
address, the string “UrlHostIsIpAddress” is hashed with the SHA-
256 algorithm to act as the model feature. For the second group of 

Web 
Page 

Computing the rule scores 

Computing the final score 

Extracting URL features 

Extracting DOM features 

Extracting Term features 

Final score ≥ 0.5 

Phishing page Legitimate page

Yes No

Model 
features 

Figure 3. Classification workflow. 

SHA-256 Hash 

Table 1. Scoring rule examples 

Rule Features # Hashed Feature Weight 

R1494 2 

32ffbec120ed857f57f3d7bb37
e6652955b21da7a7efd81d9a9
aa2865173eb35 -1.26907706 
ec92914c7db4483437c84975
8c45cf8bbc6dd0148cdb2f72b
ec0a728e8c91a7d 

R2050 1 
760e98536a709d0fcb9b717eb
542cc5af77bbabf60a501dbf7d
f81a111d1e807 

2.5238471 
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features (the last four in Table 2), a string in equation form will be 
generated by concatenating a predefined string and the concrete 
URL property. For example, for the fifth page URL feature, if the 
URL is www.phishing.com, the string “UrlDomain=phishing” 
will be hashed as the model feature. In scoring rules, all the URL 
features will be assigned a Boolean feature value, i.e., 1.0 if it is 
present in the page or 0.0 if it is absent. 

The predefined strings used to generate the model feature (shown 
in the third column of Table 2) can be inferred from the 
implementation of the classifier. However, we cannot directly 
recover the complete plaintexts from the hashed model URL 
features in equation forms. In GPPF, there are hundreds of model 
features about the URL in equation modes. Based on their 
semantics discussed above, we design a collision attack to decrypt 
them as far as possible (described in Section 3.2). 

DOM features. GPPF also uses some features about the 
Document Object Model (DOM) elements of the page to tell 
whether or not it is phishing. As shown in Table 3, we recover all 
12 kinds of DOM features being employed by GPPF.  In a similar 
way to the URL features, these page DOM feature will also be 
converted to string forms. 

As listed in Table 3, the first seven page DOM features are used 
to identify the structure property of the page, e.g., to determine 
whether the page has some kinds of DOM elements or not. These 
features directly correspond to seven predefined strings 
respectively, which will be hashed and compared with the model 
features. For example, if the page has the <form> element, the 
string “PageHasForms” will be hashed to act as the 
corresponding model feature. The eighth page DOM feature 
records all external domains that the page links to, which will be 
mapped to a string in equation mode for every individual external 
domain. In scoring rules, all the above DOM features will be 
assigned a Boolean feature value. The last four page DOM 
features indicate the fraction of some kinds of DOM elements in 
all elements. They correspond to four predefined strings. In 
scoring rules, the values of matched features are set to the fraction 
value scaling between 0.0 and 1.0. 

For the DOM features, related predefined strings can be directly 
recovered and are shown in the third column of Table 3. For the 
eighth page DOM feature, there are many related hashed model 
features in equation forms to identify different external domains. 

A collision attack is performed to recover their plaintexts 
(described in Section 3.2). 

Term features. In GPPF, the terms appearing in the page are 
taken as a kind of feature. A term feature can be a single word or 
a compound of multiple words (at most five).  

When fetching the page terms, the page text is first converted to a 
list of words in lowercase. In practice, using every word of the 
page text to construct features will greatly overburden the 
learning process. Instead, GPPF only makes features of the words 
contained in a predefined set. A fast hash algorithm, 
Murmurhash3, is employed to implement a word filter. GPPF 
maintains a list of candidate words, which are hashed with the 
Murmurhash3 algorithm. It was generated by collecting the words 
with the highest term frequency-inverse document frequency (TF-
IDF) values [50] from a large dataset. 

GPPF uses an array previous_words to construct the page term 
features, which can store at most five continuous candidate words 
of the page text. The array is initially empty. The first word is 
fetched and removed from the page word list. Its Murmurhash3 
value is computed to determine whether it is contained in the 
candidate list or not. If it is a candidate, the word will be added in 
the first element of previous_words. GPPF then checks the 
subsequent word in the list and adds it to the array in sequence if 
it is also a candidate word. For every time a word is added, all 
words currently contained in the array (at most five) are 
connected and combined with a predefined prefix (“PageTerm=”) 
to construct a phrase. It will be hashed with SHA-256 algorithm 
and compared with the hashed model term features. For example, 
if three continuous words (“abc”, “def”, and “ghi”) have been 
added in the array, the generated corresponding phrases will be 
“PageTerm=abc”, “PageTerm=abc def”, and “PageTerm=abc 
def ghi”. In scoring rules, the values of a term feature will be set 
to 1.0 if there is a matched phrase; otherwise to 0.0. When 

Table 2. URL features 

No. Page URL Features Model URL Features 

1 
The hostname is an IP 
address? 

UrlHostIsIpAddress 

2 
The number of other host 
components is greater than 
one? 

UrlNumOtherHostTokens>1 

3 
The number of other host 
components is greater than 
three? 

UrlNumOtherHostTokens>3 

4 Top level domain UrlTld=* 

5 
The first host component 
below top level domain 

UrlDomain=* 

6 Other host components UrlOtherHostToken=* 

7 Path token in URL UrlPathToken=* 

Table 3. DOM features 

No. Page DOM Features Model DOM Features 

1 Page has <form> element? PageHasForms 

2
Page has <input type=text> 
element? 

PageHasTextInputs 

3
Page has <input type=password> 
element? 

PageHasPswdInputs 

4
Page has <input type=radio> 
element? 

PageHasRadioInputs 

5
Page has <input type=checkbox> 
element? 

PageHasCheckInputs 

6
The number of <script> elements 
in the page is greater than 1? 

PageNumScriptTags>1 

7
The number of <script> elements 
in the page is greater than 6? 

PageNumScriptTags>6 

8
Token feature containing each 
external domain that is linked to 

PageLinkDomain=* 

9
Fraction of form elements whose 
action points to an external 
domain 

PageActionOtherDomainFreq

10
Fraction of links in the page 
which point to an external 
domain 

PageExternalLinksFreq 

11
Fraction of page links that use 
https 

PageSecureLinksFreq 

12
Fraction of images whose src 
points to an external domain 

PageImgOtherDomainFreq 
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encountering a non-candidate word or the array is full, GPPF will 
clear the array, fetch the next word and repeat the above steps 
until the list is empty. 

In GPPF, there are 432 hashed model term features. Every one 
corresponds to a phrase that may consist of one to five words. We 
also use a collision attack to recover their plaintexts. 

3.2 Collision Attacks 
As discussed in Section 3.1, besides 14 features being directly 
recovered in the model extraction, there still are 995 hashed 
model features needed to be decrypted. As shown in Table 4, they 
can be divided into two categories: URL-related and term-related. 
According to their semantics, we design different collision attacks 
to decrypt them. 

3.2.1 Decrypting URL-related Features 
In total, there are 563 hashed URL-related features. So far, it is 
impossible to directly construct a collision for a given SHA-256 
hash value. Instead, we collect four datasets related to URLs to 
perform targeted brute force attacks to find potential collisions as 
much as possible. To prevent the adversary from reproducing the 
attacks, the sources of the datasets are not presented in this paper. 

1) We use a dataset with about 8,000 top level domain names 
to decrypt UrlTld features. We select the name from the set 
one by one and add the prefix “UrlTld=” to generate a test 
case. By hashing it with SHA-256 and comparing the hash 
value with all URL-related features, we successfully recover 
69 UrlTld features with a desktop computer in about five 
minutes. 

2) We collect over 30,000 URLs of history phishing pages, and 
use the different elements of the URLs (e.g., hostname) to 
generate test cases for other four kinds of URL-related 
features. In a similar way as above, 171 features are 
successfully decrypted in about four minutes, including 20 
UrlDomain, 27 UrlOtherHostToken, 17 UrlPathToken, and 
107 PageLinkDomain features. 

3) With the URLs of legitimate pages in thousands of top sites, 
we get 3 UrlDomain features and 34 PageLinkDomain 
features in less than one minute. 

4) A very large URL database with over 2,000,000 records is 
leveraged to construct test cases. The decryption process 
takes about 20 minutes. As a result, we get 46 UrlTld 
features, 21 UrlDomain, 28 UrlOtherHostToken, 201 
UrlPathToken and 107 PageLinkDomain features. 

After removing duplicates, as listed in Table 4, we eventually 
recover a total of 426 (75.7%) URL-related features, including 69 

UrlTld, 21 UrlDomain, 28 UrlOtherHostToken, 201 
UrlPathToken and 107 PageLinkDomain features. 

3.2.2 Decrypting Term-related Features 
GPPF employs 432 hashed term features to detect phishing pages 
based on the page text. In practice, the text of a phishing page can 
be written in various languages. To this end, we collect some full-
text corpora for seven popular natural languages (English, French, 
German, Spanish, Dutch, Chinese and Japanese) to perform 
collision attacks. The basic steps are as follows. 

 According to the semantics of the term feature, we build a 
candidate word filter based on the implementation of the 
Murmurhash3 algorithm in Chromium. With it, we extract 
all possible word sequences consisting of one to five 
continuous candidate words from these corpora respectively. 

 For every word sequence, adding the prefix “PageTerm=” 
to generate a test case.  

 Hashing every test case with SHA-256 and comparing the 
hash value with all term features to find potential collisions. 

Via the above steps, we successfully recover 292 (67.9%)  term 
features in various languages in about 8.8 hours. The result is 
detailed in Table 5. 

To further improve the cracking result about term features, we 
also perform blind brute force attacks. We construct an alphabet 
consisting of letters in western languages. With the alphabet, all 
possible combinations of no more than eight letters are produced. 
After filtering, they are used as candidate words to generate test 
cases to find collisions. Surprisingly, in about 16 hours, we 
recover 281 term features only using a part of test cases. In a 
similar way, we also quickly recover 40 term features based on a 
set of Chinese, Japanese and Korean (CJK) ideographs. The 
related results are detailed in Table 6 and Table 7 respectively.  

After combining all above attacks results and removing duplicates, 
we eventually recover a total of 375 (86.8%) term features. 

 

Table 6. Decrypting the term features with an alphabet 

Term Size Candidate Words Decrypted Time 

1-word 1-letter to 8-letter 186 1 minute 

2-word 1-letter to 8-letter 76 8.6 hours 

3-word 1-letter to 6-letter 15 14 minutes 

4-word 1-letter to 4-letter 4 7.4 hours 

Sum 281 16.25 hours

Table 4. Model features needed to be decrypted 

Category Model Features Total Decrypted %

URL-related 

UrlTld=* 

563 

69 

426 75.7%

UrlDomain=* 21 

UrlOtherHostToken=* 28 

UrlPathToken=* 201 

PageLinkDomain=* 107 

term-related PageTerm=* 432 375 86.8%

Sum 995 801 80.5%

Language Decrypted Time 

English 201 1.7 hours 

French 6 2.3 hours 

German 51 3.2 hours 

Spanish 5 1.1 hours 

Dutch 1 6 minutes 

Chinese 27 20 minutes 

Japanese 1 5 minutes 

Sum 292 8.8 hours 

Table 5. Decrypting the term features with seven corpora
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3.3 Result Analysis 
As shown in Table 4, we successfully decrypt 801 (80.5%) model 
features with collision attacks. Together with 14 features being 
recovered in the model extraction, we eventually get the complete 
plaintexts of a total of 815 (80.8%) model features. 

After applying the decryption result to 2,130 extracted scoring 
rules, we can completely reverse engineer 1807 (84.8%) rules, 
namely every feature of them is decrypted. Besides, there are also 
196 (9.2%) rules we cannot completely crack, but at least one of 
their features is decrypted. Only 127(6.0%) rules remain 
confidential, no one of their features is cracked. 

According to their weights, GPPF’s scoring rules can be 
categorized into two types: positive rules and negative rules. As 
their names suggest, the former are assigned with a positive 
weight and can cause a rise in the phishing score for the page, 
while the latter are just the opposite. Naturally, the top-weighted 
positive or negative rules will make remarkable contributions to 
tell whether a page is phishing. After analyzing top 100 most 
weighted positive rules, we learn that 66 of them are completely 
reverse engineered, and 20 are partially cracked. For the top 100 
most weighted negative rules, 77 of them are completely reverse 
engineered, and 21 are partially cracked. In other words, given the 
cracking result, the adversary has a great chance to disguise a 
phishing page as a legitimate one by targetedly manipulating its 
content. 

4. EVASION ATTACKS 
In this section, we perform some evasion experiments to 
demonstrate the effectiveness of the classifiers cracking via 
exploiting the recovered knowledge. 

For a specific phishing page, we can infer adding or removing 
what features can reduce its phishing score based on the cracking 
result presented in Section 3. If a feature can provide negative 
contributions to the phishing scoring for a page, we call it as a 
good feature from the adversary’s point of view. On the contrary, 
if a feature only has positive contributions, we call it a bad feature. 
Correspondingly, we design two kinds of evasion attacks, good 
features insertion and bad features elimination. The basic idea 
behind them is to add or remove appropriate good or bad features 
into or from a phishing page to make its phishing score lower than 
the threshold, resulting in a misclassification. The latest 100 real 
phishing pages are collected from PhishTank as the attack dataset. 
We will try to use the two evasion attacks to manipulate them to 
evade the detection of GPPF. To minimize the potential side-
effects, we will use pseudonyms when referring to specific good 
features or bad features in the following part of this section. 

4.1 Good Features Insertion 
Given a phishing page, there may be many features can be 
leveraged to reduce its phishing score. By utilizing plenty of 
negative rules having been completely reverse engineered; we can 
adopt a very primitive but effective way to choose desirable good 
features. In fact, we can sort all negative rules only with one 
recovered feature by their weights, and directly use the features of 
top-weighted rules as good feature candidates for all target pages. 
More surprisingly, for many phishing pages in the dataset, we can 
easily convert them to legitimate pages only by inserting just one 
such good feature. Moreover, as detailed in Table 8, we find that 
only using one kind of good feature can also be effective. For 
example, we can reduce the scores of all test pages lower than 
0.50 by inserting at most six good DOM features into the page. 
On average, 2.2 good DOM features are required. 

It should be noted that a sophisticated adversary can carefully 
introduce the good features to preserve the utility of phishing 
pages.  For example, to prevent the inserted terms from attracting 
the attention, their color can be set to background color. 

After introducing above good features, the manipulated test pages 
are deployed in our Web server. We then use the latest version of 
Chrome (45.0.2454) to visit them one by one to check whether 
they can successfully evade the detection of GPPF. We find all 
the dressed-up pages (100%) are regarded as legitimate pages and 
display properly in the browser. For example, there is a phishing 
page to imitate the login page of Chase Bank. When browsing it, 
the Chrome can successfully block it as a phishing page and jump 
to the warning page as shown in Figure 2. In fact, the page is 
given a very high phishing score 0.9986. However, after inserting 
six good term features T1 ~ T6 into its text, the score is reduced to 
only 0.2784. As a result, the dressed-up page can be normally 
visited with Chrome as shown in Figure 4. 

 

4.2 Bad Features Elimination 
Compared with the good features insertion, selecting proper bad 
features from a given phishing page to perform an effective 
evasion attack is not a trivial task. The number of available bad 

Table 7. Decrypting the term features with CJK ideographs

Term Size Candidate Words Decrypted Time 

1-word 1-ideograph to 
3-ideograph 

31 1 minute 

2-word 1-ideograph to 
3-ideograph 

7 < 1 minute 

3-word 1-ideograph to 
3-ideograph 

2 < 1 minute 

4-word 1-ideograph to 
3-ideograph 

0 2 minute 

Sum 40 5 minutes 

 
Figure 4. The dressed-up phishing page can evade GPPF.

Table 8. The required number of Good features 

Feature  MIN MAX Average 

URL 1 10 2.5 

DOM 1 6 2.2 

Term 1 17 3.7 
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features is limited for a given page. Additionally, some features 
can be referred by multiple scoring rules. A feature may be not 
only present in a positive rule but also in a negative rule. Directly 
removing the features in positive rules may also result in some 
negative rules losing their efficacy. 

To this end, we design a search-based method to automatically 
select proper bad features for a given page. Specifically, we 
implement a script to compute the contribution of one feature or a 
feature set to the final score, by removing it or them from the 
page and re-computing the score. For a given page, we apply the 
script to all its recovered features to search a feature or a feature 
set whose contribution is enough to the exploitation. Namely, 
after removing the feature(s), the score of the page will be lower 
than the threshold, allowing it to be classified as a legitimate page. 

With the method, we successfully find proper bad features for 
every test page respectively. By eliminating corresponding bad 
features from the pages respectively, all test pages (100%) can 
evade the classification and normally display in Chrome. Take the 
phishing page shown in Figure 4 as an example. We find four bad 
term features BT1 ~ BT4 for it and eliminate them with some 
obfuscation techniques, such as changing a word from singular to 
plural form. As a result, we succeed in reducing its score from 
0.9986 to 0.4591 and dressing it up as a legitimate page. In the 
experiment, we find that removing at most five bad features is 
enough to make the page evade the classifier. On average, 3.1 bad 
DOM features are required. 

5. MITIGATION 
Google developers have discussed the potential adversarial 
attacks that GPPF might encounter [56]. They believe that 
possible attacks on GPPF are either limited or expensive. From 
their point of view, the adversary who tries to evade GPPF by 
disguising the phishing page as a legitimate one cannot preserve 
its utility and visual similarity at the same time. However, thanks 
to the cracking results, we can purposely introduce some easy-to-
hide good features to evade GPPF with a very low cost. For 
example, we are able to make the newly added term features 
invisible by setting their color to background color of the target 
page. 

In practical applications, GPPF is proved to be a very valuable 
tool against phishing attacks under the non-adversarial 
environment. Tens of thousands phishing sites are detected by 
Safe Browsing per week [6]. To this end, the developers may 
want to improve its robust as well as change the architecture as 
little as possible. A natural and direct idea is to select the features 
difficult to being recovered by brute force attacks. For example, 
the developers can just select the comparative long phrases, 5-
word phrases or even longer, as the term features. This would 
result in a combinatorial explosion when the adversary performs a 
blind brute force attack for cracking. The computation of 
enumerating and hashing all possible compounds of five words is 
unacceptable. Unfortunately, this idea is not effective enough 
when the adversary is aware of the feature extraction method. In 
fact, the adversary can still reverse engineer sufficient features by 
collecting appropriate page-related data as test cases to perform a 
collision attacks. The adversary can take the data as a web page to 
extract the possible word sequences according to the feature 
extraction method, and hash the sequences to check whether they 
are a term feature. For a concrete feature extraction method, the 
amount of sequences is actually limited regardless of how long 
the sequence is. Given appropriate test cases, the adversaries have 

a fair chance to find sufficient collision instances. As presented in 
Section 3.2.2, we recover 292 (67.9%) term features only using 
seven full-text corpora in 8.8 hours. These features are already 
enough for evasion attacks.  

Based on above discussions, we can learn that the most effective 
defense way is to essentially increase the complexity of reverse 
engineering the classification model, especially the semantics of 
features. To effective solve this problem, we propose a potential 
defense strategy: employing deep learning method to construct 
naturally robust client-side classifiers.  

Deep learning, as a novel powerful machine learning method, has 
been widely applied in fields of multimedia, natural language 
procedure, data mining, etc. Based on the basic thoughts of deep 
learning, especially the layer-wise learning and  fine tuning, some 
powerful deep neural networks such as LeNet [38], stacked auto-
encoder (SAE) [44] and deep belief net (DBN) [10][30], have 
been proposed to detect high level features and produce  
complicated decision functions [10]. 

In deep learning method, gradually from the low layers to the 
high layers, deep neural networks (DNN) could realize efficiently 
feature extractions.  Generally, the features imported into the low 
layers are the raw data describing the basic original properties of 
the problem instances. After the effect of multiple layers 
abstraction, the features extracted from high layers possess 
complicate semantic information, which is hard to be 
comprehended for researchers [54]. In other words, no one could 
exactly explain the mapping between  the raw data and the high 
level features. 

For an instance, as shown in Figure 5, the deep convolutional 
neural network (DCNN) proposed by Hinton [37] could classify 
the 1.2 million high-resolution images in  the ImageNet LSVRC-
2010 contest into 1,000 different classes. The DCNN has eight 
learning layers, i.e., five convolutional and three fully-connected. 
The network adopts several effective strategies, such as ReLU 
nonlinearity, max pooling, dropout and local response 
normalization, to increase its classifier ability. This enhances 
DCNN complexity. In detail, the input data are RGB images with 
224*224 pixels. The last fully-connected layers output the high 
level features with 4,096 dimensions. As a result, every 
dimension in the high level features is relative with all dimensions 
of the inputting image. The weight connections among layers, 
partially embedded with  non-linear activation functions, are 
greatly complicated and huge (almost millions). Consequently, 
even though researchers have grasped the meaning of one specific 
dimension in the highest layer, they could not find a feasible 
method that corresponds to modify partial dimensions of the raw 
data, and meanwhile affect only the specific dimension. This 
characteristic of deep learning is especially fit for building a 
robust classifier to against classifiers cracking. 

Similarly, we can build a phishing pages classifier based on the 
deep learning method, to make it  hard to be reverse engineered 
by analyzing its implementation and configurations. As shown in 
Figure 6, the classifier has n layers, i.e., n-1 layers for feature 
extraction, and one for classification. The classifier has been 
trained off-line and deployed in the client-side. The raw html 
represented as a large sparse feature vector, e.g., the features of 
bag-of-words model [35], is imported into the first layer L1 
originally. The feature vector is transformed by several functions, 
e.g. long short term memory (LSTM) [28], max pooling, and 
sigmoid activation, in different layers to produce high level 
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features in high layers. The features, output as high abstractive 
properties in layer Ln-1, are exported to the classification 
algorithm (as Ln). The final classification algorithm can be non-
linear or linear. The original features are eventually transformed 
to the final high level features with n-2 times of complex many-
to-many mapping. As a result, the complex relationship among 
them heavily increases the difficulties of inferring the original 
features from the final ones. 

When the classification model is cracked by the adversary, even 
though the deep architecture is completely recovered, the 
complexity of feature mappings can still effectively ensure the 
robust of the classification. In fact, the feature extraction in 
classifier can be regarded as a black-box in applications, which 
performs complex non-linear transforms with mutual affection of 
multiple layers weight connections. The amount of weight 
connections are millions, as exhibited in [55]. This makes it 
impossible for the adversary to figure out the exploitable 
relationships among the input and output features. We have 
reasons to believe that the deep learning method inherently has 
the energy to against classifiers cracking. 

6. DISSCUSSION 
In this study, we present an attack methodology, classifiers 
cracking, aiming at client-side classifiers and successfully 
demonstrate its effectiveness with a widely-used classifier, GPPF. 
In theory, the methodology is generic and applicable to other 
client-side classifiers. However, when applying the methodology 
to a specific classifier, we need to develop a specially designed 
crack techniques according to its implementation. In fact, there 
are many classifiers equipped with different classification 
algorithms, such as [7][40].  To further demonstrate the security 
challenges brought by classifiers cracking, in the future, we will 
pay attention to some other types of classifiers and investigate 
their security from the point of cracking. These classifiers may 
take security into consideration to different extents and be 
deployed in different ways. More reverse engineer techniques 
may need to be employed to crack them. 

As described in Section 3 and 4, we eventually completely 
reverse engineer 84.8% scoring rules of the GPPF classification 
model, which is proved to be sufficient for launching effective 

evasion attacks. However, in fact, we can get better cracking 
results by introducing more appropriate corpora. For example, 
using a comprehensive database of history phishing pages can 
decrypt more term features. Sometimes, the adversary may want 
to get perfect knowledge about a classifier for some special 
purposes, such as stealing its techniques to reengineer a new 
classifier. Besides, it needs to be emphasized that some seemingly 
unrelated dataset, e.g., a corpus, can also be leveraged to 
compromise the security of client-side classifiers. The developers 
should collect as much as possible dataset, especially publicly 
available, to evaluate the robust of their classifier before releasing 
it. 

We have got sufficient knowledge about the GPPF classification 
model by cracking it. This allows us to easily find exploitable 
good and bad features for a given page. In this study, it is not 
necessary to design a sophisticated algorithm to more effectively 
and efficiently find exploitable features. However, if the 
adversary has only limited knowledge about the target classifier, 
she can develop a powerful algorithm to discover exploitable 
features. Furthermore, in theory, combining the good features 
insertion and bad features elimination can produce better 
performance. It is also helpful for the adversary to attack a 
classifier. To this end, developers should prevent the information 
of their classifier from being inferred by the adversaries as far as 
possible. 

7. RELATED WORK 
Many existing studies have paid much attention to the security of 
classifiers, and the arm race between adversaries and defenders 
will never end.  

Attacks. The attacks can be categorized into two types by their 
influences: causative attacks and exploratory attacks.  

In causative attacks, the adversary has the chances to affect the 
training process by contaminating training data (e.g. injecting 
many specially crafted samples). This kind of attack has been 
used to degrade the performance of a lot of learning-based 
applications, such as biometric authentication [16][18], spam 
filtering [45], and network intrusion detection [34][49]. In [16], a 
method is proposed to mislead an adaptive biometric system to 
perform self-update by submitting a proper sequence of spoofed 
biometric traits to the sensor and cause a misclassification 
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eventually. A further work [18] reveals that poisoning attacks can 
be used to compromise face templates in a more general case. 
Another study [45] succeeds in exploiting machine learning to 
compromise a spam filter by manipulating the filter’s training 
data. They proposed two kinds of poisoning attacks by inserting 
different sets of words into attack emails: dictionary attacks inject 
words indicative of legitimate emails to increase 
misclassifications, and focused attack tries to introduce words to 
have the filter block one specific kind of emails (e.g. emails from 
business rivals). Besides, as discussed in [20][34][49], the 
intrusion detection systems may also be vulnerable to causative 
attacks. The adversary can inject carefully crafted malicious 
traffic samples into training dataset and finally force the classifier 
to learn a wrong model of the normal traffic. 

In exploratory attacks, the adversary tries to figure out as much 
knowledge (e.g. type of classifier, features, and threshold) of the 
classifiers as possible to effectively evade them. Exploratory 
attacks have been applied to various security applications. Lowd 
and Meek conduct an attack that minimizes a cost function [42]. 
They further propose attacks against statistical spam filters that 
add the words indicative of non-spam emails to spam emails [41]. 
The same strategy is employed in [45]. In [43], a simple but 
effective attack methodology called reverse mimicry is designed 
to evade structural PDF malware detection systems. The main 
idea is injecting malicious content into a legitimate PDF while 
introducing minimum differences within its structure. The related 
experiments show that some very popular classification 
algorithms (e.g. SVMs and neural networks) can also be evaded 
with this method. A recent work [51] uses PDFRATE, an online 
learning-based system for detection of PDF malware, as a case to 
investigate the effectiveness of evasion attacks. The study 
reconstructs a similar classifier through training one of the 
publicly available datasets by a few deduced features, and then 
evaded PDFRATE by insertion of dummy content into PDF files. 
Additionally, in [17], a simple algorithm is proposed for evasion 
of classifiers with differentiable discriminant functions. The study 
empirically demonstrated that very popular classification 
algorithms, e.g., SVMs and neural networks, can still be evaded 
with high probability even if the adversary can only learn limited 
knowledge. 

Unfortunately, to our best knowledge, all of the existing studies 
don't pay any special attention to the client-side classifiers. As 
demonstrated in this study, the client-side classifiers have a larger 
attack surface and hence larger number of potential attacks. 

Defenses. Many countermeasures against evasion attacks have 
been proposed, such as using game theory [21][22] or 
probabilistic models [15][48] to predicted attack strategy to 
construct more robust classifiers, employing multiple classifier 
systems (MCSs) [12][13][14] to increase the difficulty of evasion, 
and optimizing feature selection [29][36] to make the features 
evenly distributed.  

Game-theoretical approaches [21][22] model the interactions 
between the adversary and the classifier as a game. The 
adversary’s goal is to evade detection by minimally manipulating 
the attack instances, while the classifier is retrained to correctly 
classify them. However, the retraining procedure is very 
expensive in the situation where the classifier is cracked. The 
adversary always can construct an attack instance to evade the 
current classifier. Similarly, for approaches based on probabilistic 
models [15][48], the adversary can also easily construct a hard-to-
predict attack instance based on cracked knowledge. 

MCSs [12][13][14], as the name suggests, use multiple classifiers 
rather than only one to improve classifier’s robustness. The 
adversaries who want to effectively evade the classification have 
to fight with more than one classifier. Although MCSs actually 
increases the workload of classifiers cracking, it doesn’t improve 
the security of client-side classifiers fundamentally. 

In [29], the method weight evenness via feature selection 
optimization is proposed. By appropriate feature selection, the 
weight of every feature is evenly distributed, thus the adversaries 
have to manipulate a larger number of features to evade detection. 
In [36], the features are reweighted inversely proportional to their 
corresponding importance, making it difficult for the adversary to 
exploit the features. However, given sufficient knowledge, the 
adversary can easily find enough exploitable features. Besides, in 
many cases, the adversary can hide the manipulation very deeply 
without attracting the attention. For example, a phisher can 
leverage various HTML techniques to make good features 
invisible.  

These defense techniques are built on the assumption that the 
classification model is kept confidential to the adversary or can be 
updated timely. However, when the adversary learned sufficient 
knowledge by cracking classifiers, they can easily and quickly 
construct effective evasion attacks targeted to the defense 
techniques. 

8. CONCLUSIONS 
In this paper, we presented a new attack methodology, classifier 
cracking, for evading the client-side classifier. Our approach is 
different from existing attack methods is that various reverse 
engineering techniques are leveraged to directly extract desirable 
knowledge from client-side classifier for launching evasion 
attacks. Our study took GPPF, a learning-based filter for phishing 
pages deployed in Chrome as a case to study, which owns over 
one billion users. Employing various reverse engineering 
techniques, we successfully crack the GPPF model and 
completely recovered 84.8% encrypted scoring rules. Based on 
the information, we developed two kinds of evasion attacks: good 
features insertion and bad features elimination. The latest 100 
real phishing pages collected from PhishTank were taken as the 
target of evaluation. The attack experiments showed that we can 
easily manipulate all the phishing pages (100%) to make them 
successfully evade the detection of GPPF in the latest version of 
Chrome. Additionally, a potential defense strategy was also 
discussed. We believe that the deep learning method can be 
employed to build client-side classifiers for essentially increasing 
the complexity of cracking. 

Our research revealed an important fact that the client-side 
classifiers have a larger attack surface and hence larger number of 
potential attacks. In the future, we will further research potential 
defense techniques, especially based on the deep learning method, 
to develop more robust client-side classifier framework. 
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