
1

Cracking Classifiers for Evasion: A Case Study on the
Google’s Phishing Pages Filter

Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, Gang Yang

Renmin University of China
{liangb, sumiaoqiang, youwei, wenchang, yanggang}@ruc.edu.cn

ABSTRACT
Various classifiers based on the machine learning techniques have
been widely used in security applications. Meanwhile, they also
became an attack target of adversaries. Many existing studies
have paid much attention to the evasion attacks on the online
classifiers and discussed defensive methods. However, the
security of the classifiers deployed in the client environment has
not got the attention it deserves. Besides, earlier studies have only
concentrated on the experimental classifiers developed for
research purposes only. The security of widely-used commercial
classifiers still remains unclear. In this paper, we use the Google’s
phishing pages filter (GPPF), a classifier deployed in the Chrome
browser and with over one billion users, as a case to investigate
the security challenges for the client-side classifiers. A new attack
methodology targeted to client-side classifiers, called classifiers
cracking, is presented. According to the methodology, we
successfully crack the classification model of GPPF and extract
sufficient knowledge from it for performing effective evasion
attacks, including the classification algorithm, scoring rules and
features, etc. Most importantly, we completely reverse engineer
84.8% scoring rules, covering most of high-weighted rules. Based
on the cracked information, we perform two kinds of evasion
attacks to GPPF, using 100 real phishing pages as the target of
evaluation. The experiments show that all the phishing pages
(100%) can be easily manipulated to bypass the detection of
GPPF. Our study demonstrates that the existing client-side
classifiers are very vulnerable to classifiers cracking attacks.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software; I.2
[Artificial Intelligence]: Learning

General Terms
Security

Keywords
Phishing Detection, Machine Learning, Classifiers, Cracking,
Collision Attacks, Evasion Attacks

1. INTRODUCTION
Machine learning techniques have been commonly adopted in
security applications. Various classifiers were trained for
detecting malicious web pages [23], spam [53], phishing [56],
malware [47], etc. Not surprisingly, the classifiers themselves also
became an attack target of adversaries. The adversary can attempt
to fool classifiers by purposely modifying their behaviors. For
example, a spammer can manipulate the spam mails to evade
spam filters by inserting some good words indicative of legitimate

mails or misspelling bad words indicative of spam mails [41].
This requires the classifier can resist potential attacks.

Many existing studies have paid attention to the security of
classifiers. According to the taxonomy of attacks against
classifiers proposed in [8][9][32], the influences of attacks on the
classifier are categorized into two types: causative attacks
interfere training process with control over training data to
downgrade the performance of the classifier, and exploratory
attacks exploit knowledge of the trained classifier to cause
misclassifications but do not affect training.

In causative attacks, the adversary has the opportunity to inject
(poison) specially crafted samples during the collection of
training samples and cause the learner to misclassify security
violations (false negatives), such as [16][17][18][19]. For example,
a poisoning attack method against support vector machines (SVM)
is presented in [17]. It was demonstrated that the SVM’s
classification accuracy can be largely impacted by feeding
malicious training data. Fortunately, in practice, the adversary
doesn’t always have an opportunity to effectively control over
training data. In fact, the training process of most classifiers,
especially the ones deployed in commercial products, is not open
to the public. The adversary needs to fight with trained classifiers.
For example, according to described in [56], the Google’s
phishing pages classifier is developed in an offline training
process. The training dataset consists of millions of samples from
various domains. In this case, it is very difficult, if not impossible,
for an adversary to craft enough amounts of malicious inputs to
effectively poison the training process.

On the other hand, exploratory attacks attempt to learn enough
knowledge about the trained classifiers and find a way to evade
the classification. Some existing studies about evasion attacks
made the unrealistic assumption that the adversary has perfect
knowledge of classification model [26]. In practice, the adversary
often needs to send some probes (e.g., membership queries) to the
classifier and observe its response to deduce desirable knowledge
[23], perform an adversarial learning to get sufficient knowledge
about the target classifier to construct evasion attacks [42], or
reconstruct an imitation of the target classifier based on the
available public information (e.g., training data) to gain key
knowledge [51]. In theory, the success of evasion attacks heavily
depends on the amount of knowledge possessed by the adversary.
Especially, the knowledge of features contributes most to the
success of the attacks as discussed in [51]. Accordingly, some
mitigation techniques have been proposed to against evasion
attacks by reducing the leakage of exploitable knowledge as much
as possible [8][11] or making the learning method more robust to
evasion [15][36].

However, existing studies often overlooked an important fact that
some classifiers are deployed in the client environment fully

2

controlled by users (client-side classifier for short) rather than in a
remote server. For example, the classifiers for filtering spam
emails and phishing pages are often embedded in the email clients
or web browsers respectively. In the scenario, the classifiers will
face more serious security challenges. Instead of collecting the
information via indirectly observations, the adversaries can freely
and directly analyze the implementation and configuration of the
classifiers to evade them. Consequently, it should be investigated
carefully that how an adversary can learn the exploitable
knowledge from a classifier deployed in the user clients and how
effective the knowledge are exploited in launching an evasion
attack. Additionally, the existing studies generally focused on the
experimental classifiers developed for research purposes only.
The security of widely-used classifiers in commercial products
still remains unclear. From a practical point of view, evaluating
the security of commercial classifiers is more significant for
protecting end users from evasion attacks.

To this end, in this study, we investigate the security challenges
for the client-side classifiers via a case study on the Google’s
phishing pages filter (GPPF), a very widely-used classifier for
automatically detecting unknown phishing pages. The classifier is
completely integrated within the Chrome browser and invoked for
every web page visited by users to determine whether it is
phishing or not. Due to the popularity of Chrome, there are over
one billion users using GPPF to against potential phishing attacks
[1]. It is probably the most widely-used classifier as we know. If
the adversary can easily evade it, countless users will be exposed
to out-of-control phishing attacks.

In this paper, we demonstrate a practical and effective attack
methodology, named classifiers cracking, in which various
reverse engineering techniques are leveraged to extract sufficient
knowledge from the client-side classifier for launching evasion
attacks. Specifically, by performing some static and dynamic
analysis on the implementation of Chromium (the development
version of Chrome), we successfully extract the classification
model of GPPF from it, mainly involving the classification
algorithm, 2,130 scoring rules and corresponding weights, and
1,009 hashed features composing the scoring rules. With the help
of some public datasets (e.g., large corpora), we then launch a
collision attack to the hashed features and decrypt 815 (80.8%) of
them only within a dozen of hours. As a result, we can
completely reverse engineer 1807 (84.8%) scoring rules, covering
most of high-weighted rules. Additionally, 196 (9.2%) scoring
rules are partially cracked and can also be exploited to
compromise the classification. There are only 127 (6.0%) rules
surviving from the collision attack.

Based on the extracted information, we design two kinds of
evasion attacks, i.e., good features insertion and bad features
elimination. The basic idea behind these attacks is to add or
remove some features with remarkable contributions to GPPF
scoring into or from the target phishing pages to reduce their
phishing scores, making the computed scores lower than the
positive threshold defined by GPPF. We evaluate the
effectiveness of the attacks with the 100 latest real phishing
pages collected from PhishTank [2], a famous phishing URLs
tracking site. The results show that we can easily manipulate all
the phishing pages under the direction of the cracked knowledge,
to make them successfully evade the detection of GPPF in the
latest version of Chrome.

We also analyze the weakness of existing defense techniques
when applying them to client-side classifiers, and introduce a
potential defense strategy from the viewpoint of against cracking.
The main idea is to employ the machine learning method to
construct the client-side classifier such that its features are not
prone to be reverse engineered inherently.

This paper makes the following main contributions.

 We propose a new attack methodology, classifiers cracking,
aiming at the client-side classifiers. The adversary can
follow it to readily acquire exploitable knowledge from the
target classifier to launch effective evasion attacks.

 We successfully crack and evade the GPPF, a commercial
classifier with over one billion users. It is demonstrated that
the existing client-side classifiers are indeed vulnerable to
classifiers cracking attacks.

 We discuss a potential defense strategy against classifiers
cracking. We believe that it can be employed to enhance the
security of various client-side classifiers, not only GPPF.

2. BACKGROUND
2.1 Threat Model
As shown in Figure 1(a), how to classify an instance in a server-
side classifier is often a black-box to the adversary. The adversary
can only send some queries and analyze responses to learn the
information about it. In many cases, this way is already enough to
launch an evasion attack. The adversary can construct a
malformed instance to fool the classifier based on the information
learned in advance.

Query

Response

Knowledge

Server-side
Classifier

(a) Evading the server-side classifier

Client-side
Classifier

KnowledgeKnowledgeKnowledge

(b) Evading the client-side classifier

Figure 1. Threats to classifiers.

3

However, when a classifier is deployed in the client-side
computer, the situation may become worse. As shown in Figure
1(b), for a client-side classifier, its operations are performed in a
white-box. The adversary can leverage almost all kinds of
analysis techniques, such as debugging, disassembling, code
analysis, dynamic taint tracking, etc., to thoroughly analyze the
target classifier. As a result, the adversary has an opportunity to
get more comprehensive knowledge about the classifier to
develop more sophisticated evasion attacks. The malformed
instance can be applicable for all the users using the classifier.
Besides, if the adversary gets perfect knowledge about the
classifier, she can even reengineer a new classifier for commercial
purposes. In this study, it is assumed that all the implementation
and configuration of the client-side classifier are available for the
adversary. The adversary can figure out the type of classification
model, the classification algorithm and the feature extraction
method by leveraging various techniques. Considering the
advancement of modern analysis techniques, this assumption is
reasonable.

Some client-side classifiers, have introduced some defense
techniques to prevent the adversary from learning crucial
information. For example, GPPF employs the cryptography
technique to protect the classification model. Unfortunately, it is
proved to be ineffective to against classifier cracking (discussed
in Section 3 and 4).

2.2 Phishing and GPPF
According to the latest report [3] of Anti-Phishing Working
Group (APWG), phishing attacks remain widespread: the number
of unique phishing reports submitted to APWG during Q4 of 2014
was 197,252, and there is an increase of 18 percent from the
163,333 received in Q3. To minimize the impact of phishing
attacks, a variety of methods have been proposed to detect
phishing pages, involving machine learning [39][52][56] or other
techniques [24] [25] [27] [31] [33] [46] [57] [58].

Modern web browsers also provide detection tools to assist end
users against phishing attacks. Safe Browsing, a service offered by
Chrome, is aiming at providing not only blacklists of malicious
URLs but also a trained classifier (GPPF) which automatically
detects phishing pages as a countermeasure to the phishing
problem [4]. In Chrome, Safe Browsing serves as a guard when a
request comes, and the request URL will be checked before the
content is allowed to begin loading. The URL is checked against
two blacklists: malware and phishing. If the URL is matched with
the blacklists, Chrome will block the request and jump to a
warning page as shown in Figure 2. More importantly, for the
URL that is not present in the blacklists, Chrome will further
invoke GPPF to determine whether it is legitimate or phishing. In
practice, the phishing blacklist needs to be updated constantly and
users will be vulnerable to newly created phishing websites.
GPPF acts as an indispensable role in protecting end users from
unknown phishing pages.

In fact, GPPF is the local version of a Google’s internal classifier.
Google developed and trained a scalable machine learning
classifier in its servers to detect phishing websites and use it to
maintain Google’s phishing blacklist automatically [56]. Training
the classifier is a constant offline process. The training process
uses a sample of roughly ten million URLs analyzed over the past
three months as the training dataset. The number of URLs from a
single domain is also limit to 150 per week to prevent a single
domain from having too much contribution to the classification

model. Consequently, the adversaries don’t have an opportunity
to alter the training dataset enough to make the trained classifier
misclassify phishing pages as legitimate. However, to provide the
real-time detection of unknown phishing pages, the trained
classifier is also implemented as a part of Safe Browsing, i.e.,
GPPF. As an internal component of the Chrome browser, GPPF is
completely deployed and running in the user environment. This
actually allows the adversary to freely analyze its implementation
and configurations to construct more sophisticated phishing
attacks.

According to the report of StatCounter [5], from Aug 2014 to Aug
2015, Chrome shares an average of 48.6% market and is the most
popular web browser. In May 2015, Google announced that
Chrome has over one billion active users [1]. This means over one
billion users’ web surfing are protected by GPPF. Note that if a
phishing page can fool GPPF, it will have more chances to keep
away from the Google’s phishing blacklist. Furthermore, the
phishing blacklist provided by Google is also employed in Firefox
and Safari browsers, as well as by Internet Service Providers
(ISPs) [6]. We have reason to believe that the security breach of
GPPF will potentially impact many more people besides just the
users of Chrome.

3. CRACKING GPPF
There is very limited public information about the design and
implementation of GPPF. We choose to directly analyze the
development version of the Chrome browser, Chromium, to crack
GPPF. The cracking includes two main steps: (1) extracting the
classification model of GPPF from Chromium; and (2) decrypting
the hashed features of the model. It needs to be mentioned that
some sensitive details of the cracking are intentionally omitted
to prevent them from being used for malicious purposes.

3.1 Extracting the Classification Model

3.1.1 Classification Algorithm
The multi-process architecture that Chrome/Chromium adopts
helps it be more robust. According to a very brief description in
[4], we can know that Browser process will periodically fetch an
updated model from Google’s server and send it to every Render
process via an IPC channel. This allows the classification to be
done in the Render process, which will score the request page to
tell whether it is phishing or not.

Figure 2. Phishing warning page.

4

We collect the execution traces of a phishing page and a
legitimate page by monitoring the Render process of them in
Chromium using a debug tool gdb. With a differential analysis of
the traces, we find the GPPF’s scoring function ComputeScore(),
which is a method of the Scorer class located in the file scorer.cc.
Combining a dynamically backward tracking of the execution
path started from ComputeScore() and a static analysis on the
source code, we conclude the workflow of the classification. As
shown in Figure 3, the classifier first extracts three kinds of page
features from the current web page in order, i.e., URL, DOM and
Term features. Second, the collected page features are hashed
with the SHA-256 algorithm and sent to the function
ComputeRuleScore() to compute the rule score for every scoring
rule, along with the hashed model features. Third, ComputeScore()
combines all the rule scores to generate a final score for the
current page. Finally, the score is compared with a predefined
threshold (fixed in 0.5). If the score is smaller than the threshold,
the page will be regarded as legitimate; otherwise, it will be
identified as a phishing page and be blocked.

Based on the analysis of the scoring process, we find the GPPF is
a logistic regression classifier, which uses the following two
expressions to compute the phishing score for the target page.
GPPF computes the total score for the page in log odds using the
expression (1), and uses the normalization expression (2) to
transform the score in log odds to the final score.

2130

2 1
,1

i

n

j
jii

i

VWWLogodds (1)

Logodds

Logodds

e

e
score

1
 (2)

According to expression (1), the computing of the log odds of the
page involves 2,130 scoring rules. Every rule has a weight,
namely W1 ~ W2130. Except for the first rule, every rule consists of
from one to four (i.e., ni for the ith rule) model features. Before
computing the rule scores, the page features are first mapped to
string forms, which will be hashed and compared with the model
features. For every rule, the classifier creates a set of feature
values (i.e., Vi, 1 ~ Vi, ni) for all matched model features. For
Boolean feature, True is converted to 1.0 and False is converted

to 0.0. The continuous features are scaled to be between 0.0 and
1.0. If a model features of the rule is absent from the target page,
its feature value will be set to 0.0. The score of the rule will be
computed by combining the product of all the feature values and
its weight. Finally, the log odds of the page will be produced by
summing up all the rules scores.

To crack the classification model, we need to recover the weight
and model features for every scoring rule. The rule weight can be
collected by debugging the Render process. We set a breakpoint
in ComputeRuleScore(), in which an extractor written in gdb script
is invoked to read the weight information from the rule objects in
the memory and save them in a file. In a similar way, we also get
the number of model features for every rule. However, the model
features are not stored in plaintext; instead, they are hashed with
the SHA-256 algorithm and hidden in some complex data
structures. With carefully tracking of the scoring process, we
locate their addresses and designed a gdb script to extract them
from rule objects. Take two extracted rules as examples. As listed
in Table 1, the rule R1494 is a negative rule with two features. This
kind of rule is used to identify the good property indicative of
legitimate pages. On the contrary, the rule R2050 is a positive rule,
including only one feature. Some of the model features are
present in different scoring rules. After eliminating duplicates, in
total, we collect 1,009 individual hashed model features. The
decryption of them will be described in Section 3.2.

3.1.2 Model Features
To decrypt hashed model features, we should first get clear about
their semantics and how the page features are mapped to them.
When computing the score, three kinds of page features will be
mapped to corresponding model features in different ways.

URL features. In practice, the phishers often obfuscate their
URLs to hide suspicious addresses or confuse victims into
believing they come from a trusted party. Based on the
observation, in GPPF, some characteristics of the URL are
employed to identify phishing pages. By analyzing the
implementation of the classifier, we recover all seven kinds of
properties of the URL being extracted as the page URL features,
as shown in Table 2. The page URL features will be converted to
string forms, which will be hashed and compared with the
encrypted model URL features during computing scores.

The page URL features can be categorized into two groups. For
one of the first group of features (the first three in Table 2), if it is
present in the URL, a hashed predefined string will be taken as its
corresponding model feature. Take the first page URL feature as
an example. If the hostname part of the URL is a numeric IP
address, the string “UrlHostIsIpAddress” is hashed with the SHA-
256 algorithm to act as the model feature. For the second group of

Web
Page

Computing the rule scores

Computing the final score

Extracting URL features

Extracting DOM features

Extracting Term features

Final score ≥ 0.5

Phishing page Legitimate page

Yes No

Model
features

Figure 3. Classification workflow.

SHA-256 Hash

Table 1. Scoring rule examples

Rule Features # Hashed Feature Weight

R1494 2

32ffbec120ed857f57f3d7bb37
e6652955b21da7a7efd81d9a9
aa2865173eb35 -1.26907706
ec92914c7db4483437c84975
8c45cf8bbc6dd0148cdb2f72b
ec0a728e8c91a7d

R2050 1
760e98536a709d0fcb9b717eb
542cc5af77bbabf60a501dbf7d
f81a111d1e807

2.5238471

5

features (the last four in Table 2), a string in equation form will be
generated by concatenating a predefined string and the concrete
URL property. For example, for the fifth page URL feature, if the
URL is www.phishing.com, the string “UrlDomain=phishing”
will be hashed as the model feature. In scoring rules, all the URL
features will be assigned a Boolean feature value, i.e., 1.0 if it is
present in the page or 0.0 if it is absent.

The predefined strings used to generate the model feature (shown
in the third column of Table 2) can be inferred from the
implementation of the classifier. However, we cannot directly
recover the complete plaintexts from the hashed model URL
features in equation forms. In GPPF, there are hundreds of model
features about the URL in equation modes. Based on their
semantics discussed above, we design a collision attack to decrypt
them as far as possible (described in Section 3.2).

DOM features. GPPF also uses some features about the
Document Object Model (DOM) elements of the page to tell
whether or not it is phishing. As shown in Table 3, we recover all
12 kinds of DOM features being employed by GPPF. In a similar
way to the URL features, these page DOM feature will also be
converted to string forms.

As listed in Table 3, the first seven page DOM features are used
to identify the structure property of the page, e.g., to determine
whether the page has some kinds of DOM elements or not. These
features directly correspond to seven predefined strings
respectively, which will be hashed and compared with the model
features. For example, if the page has the <form> element, the
string “PageHasForms” will be hashed to act as the
corresponding model feature. The eighth page DOM feature
records all external domains that the page links to, which will be
mapped to a string in equation mode for every individual external
domain. In scoring rules, all the above DOM features will be
assigned a Boolean feature value. The last four page DOM
features indicate the fraction of some kinds of DOM elements in
all elements. They correspond to four predefined strings. In
scoring rules, the values of matched features are set to the fraction
value scaling between 0.0 and 1.0.

For the DOM features, related predefined strings can be directly
recovered and are shown in the third column of Table 3. For the
eighth page DOM feature, there are many related hashed model
features in equation forms to identify different external domains.

A collision attack is performed to recover their plaintexts
(described in Section 3.2).

Term features. In GPPF, the terms appearing in the page are
taken as a kind of feature. A term feature can be a single word or
a compound of multiple words (at most five).

When fetching the page terms, the page text is first converted to a
list of words in lowercase. In practice, using every word of the
page text to construct features will greatly overburden the
learning process. Instead, GPPF only makes features of the words
contained in a predefined set. A fast hash algorithm,
Murmurhash3, is employed to implement a word filter. GPPF
maintains a list of candidate words, which are hashed with the
Murmurhash3 algorithm. It was generated by collecting the words
with the highest term frequency-inverse document frequency (TF-
IDF) values [50] from a large dataset.

GPPF uses an array previous_words to construct the page term
features, which can store at most five continuous candidate words
of the page text. The array is initially empty. The first word is
fetched and removed from the page word list. Its Murmurhash3
value is computed to determine whether it is contained in the
candidate list or not. If it is a candidate, the word will be added in
the first element of previous_words. GPPF then checks the
subsequent word in the list and adds it to the array in sequence if
it is also a candidate word. For every time a word is added, all
words currently contained in the array (at most five) are
connected and combined with a predefined prefix (“PageTerm=”)
to construct a phrase. It will be hashed with SHA-256 algorithm
and compared with the hashed model term features. For example,
if three continuous words (“abc”, “def”, and “ghi”) have been
added in the array, the generated corresponding phrases will be
“PageTerm=abc”, “PageTerm=abc def”, and “PageTerm=abc
def ghi”. In scoring rules, the values of a term feature will be set
to 1.0 if there is a matched phrase; otherwise to 0.0. When

Table 2. URL features

No. Page URL Features Model URL Features

1
The hostname is an IP
address?

UrlHostIsIpAddress

2
The number of other host
components is greater than
one?

UrlNumOtherHostTokens>1

3
The number of other host
components is greater than
three?

UrlNumOtherHostTokens>3

4 Top level domain UrlTld=*

5
The first host component
below top level domain

UrlDomain=*

6 Other host components UrlOtherHostToken=*

7 Path token in URL UrlPathToken=*

Table 3. DOM features

No. Page DOM Features Model DOM Features

1 Page has <form> element? PageHasForms

2
Page has <input type=text>
element?

PageHasTextInputs

3
Page has <input type=password>
element?

PageHasPswdInputs

4
Page has <input type=radio>
element?

PageHasRadioInputs

5
Page has <input type=checkbox>
element?

PageHasCheckInputs

6
The number of <script> elements
in the page is greater than 1?

PageNumScriptTags>1

7
The number of <script> elements
in the page is greater than 6?

PageNumScriptTags>6

8
Token feature containing each
external domain that is linked to

PageLinkDomain=*

9
Fraction of form elements whose
action points to an external
domain

PageActionOtherDomainFreq

10
Fraction of links in the page
which point to an external
domain

PageExternalLinksFreq

11
Fraction of page links that use
https

PageSecureLinksFreq

12
Fraction of images whose src
points to an external domain

PageImgOtherDomainFreq

6

encountering a non-candidate word or the array is full, GPPF will
clear the array, fetch the next word and repeat the above steps
until the list is empty.

In GPPF, there are 432 hashed model term features. Every one
corresponds to a phrase that may consist of one to five words. We
also use a collision attack to recover their plaintexts.

3.2 Collision Attacks
As discussed in Section 3.1, besides 14 features being directly
recovered in the model extraction, there still are 995 hashed
model features needed to be decrypted. As shown in Table 4, they
can be divided into two categories: URL-related and term-related.
According to their semantics, we design different collision attacks
to decrypt them.

3.2.1 Decrypting URL-related Features
In total, there are 563 hashed URL-related features. So far, it is
impossible to directly construct a collision for a given SHA-256
hash value. Instead, we collect four datasets related to URLs to
perform targeted brute force attacks to find potential collisions as
much as possible. To prevent the adversary from reproducing the
attacks, the sources of the datasets are not presented in this paper.

1) We use a dataset with about 8,000 top level domain names
to decrypt UrlTld features. We select the name from the set
one by one and add the prefix “UrlTld=” to generate a test
case. By hashing it with SHA-256 and comparing the hash
value with all URL-related features, we successfully recover
69 UrlTld features with a desktop computer in about five
minutes.

2) We collect over 30,000 URLs of history phishing pages, and
use the different elements of the URLs (e.g., hostname) to
generate test cases for other four kinds of URL-related
features. In a similar way as above, 171 features are
successfully decrypted in about four minutes, including 20
UrlDomain, 27 UrlOtherHostToken, 17 UrlPathToken, and
107 PageLinkDomain features.

3) With the URLs of legitimate pages in thousands of top sites,
we get 3 UrlDomain features and 34 PageLinkDomain
features in less than one minute.

4) A very large URL database with over 2,000,000 records is
leveraged to construct test cases. The decryption process
takes about 20 minutes. As a result, we get 46 UrlTld
features, 21 UrlDomain, 28 UrlOtherHostToken, 201
UrlPathToken and 107 PageLinkDomain features.

After removing duplicates, as listed in Table 4, we eventually
recover a total of 426 (75.7%) URL-related features, including 69

UrlTld, 21 UrlDomain, 28 UrlOtherHostToken, 201
UrlPathToken and 107 PageLinkDomain features.

3.2.2 Decrypting Term-related Features
GPPF employs 432 hashed term features to detect phishing pages
based on the page text. In practice, the text of a phishing page can
be written in various languages. To this end, we collect some full-
text corpora for seven popular natural languages (English, French,
German, Spanish, Dutch, Chinese and Japanese) to perform
collision attacks. The basic steps are as follows.

 According to the semantics of the term feature, we build a
candidate word filter based on the implementation of the
Murmurhash3 algorithm in Chromium. With it, we extract
all possible word sequences consisting of one to five
continuous candidate words from these corpora respectively.

 For every word sequence, adding the prefix “PageTerm=”
to generate a test case.

 Hashing every test case with SHA-256 and comparing the
hash value with all term features to find potential collisions.

Via the above steps, we successfully recover 292 (67.9%) term
features in various languages in about 8.8 hours. The result is
detailed in Table 5.

To further improve the cracking result about term features, we
also perform blind brute force attacks. We construct an alphabet
consisting of letters in western languages. With the alphabet, all
possible combinations of no more than eight letters are produced.
After filtering, they are used as candidate words to generate test
cases to find collisions. Surprisingly, in about 16 hours, we
recover 281 term features only using a part of test cases. In a
similar way, we also quickly recover 40 term features based on a
set of Chinese, Japanese and Korean (CJK) ideographs. The
related results are detailed in Table 6 and Table 7 respectively.

After combining all above attacks results and removing duplicates,
we eventually recover a total of 375 (86.8%) term features.

Table 6. Decrypting the term features with an alphabet

Term Size Candidate Words Decrypted Time

1-word 1-letter to 8-letter 186 1 minute

2-word 1-letter to 8-letter 76 8.6 hours

3-word 1-letter to 6-letter 15 14 minutes

4-word 1-letter to 4-letter 4 7.4 hours

Sum 281 16.25 hours

Table 4. Model features needed to be decrypted

Category Model Features Total Decrypted %

URL-related

UrlTld=*

563

69

426 75.7%

UrlDomain=* 21

UrlOtherHostToken=* 28

UrlPathToken=* 201

PageLinkDomain=* 107

term-related PageTerm=* 432 375 86.8%

Sum 995 801 80.5%

Language Decrypted Time

English 201 1.7 hours

French 6 2.3 hours

German 51 3.2 hours

Spanish 5 1.1 hours

Dutch 1 6 minutes

Chinese 27 20 minutes

Japanese 1 5 minutes

Sum 292 8.8 hours

Table 5. Decrypting the term features with seven corpora

7

3.3 Result Analysis
As shown in Table 4, we successfully decrypt 801 (80.5%) model
features with collision attacks. Together with 14 features being
recovered in the model extraction, we eventually get the complete
plaintexts of a total of 815 (80.8%) model features.

After applying the decryption result to 2,130 extracted scoring
rules, we can completely reverse engineer 1807 (84.8%) rules,
namely every feature of them is decrypted. Besides, there are also
196 (9.2%) rules we cannot completely crack, but at least one of
their features is decrypted. Only 127(6.0%) rules remain
confidential, no one of their features is cracked.

According to their weights, GPPF’s scoring rules can be
categorized into two types: positive rules and negative rules. As
their names suggest, the former are assigned with a positive
weight and can cause a rise in the phishing score for the page,
while the latter are just the opposite. Naturally, the top-weighted
positive or negative rules will make remarkable contributions to
tell whether a page is phishing. After analyzing top 100 most
weighted positive rules, we learn that 66 of them are completely
reverse engineered, and 20 are partially cracked. For the top 100
most weighted negative rules, 77 of them are completely reverse
engineered, and 21 are partially cracked. In other words, given the
cracking result, the adversary has a great chance to disguise a
phishing page as a legitimate one by targetedly manipulating its
content.

4. EVASION ATTACKS
In this section, we perform some evasion experiments to
demonstrate the effectiveness of the classifiers cracking via
exploiting the recovered knowledge.

For a specific phishing page, we can infer adding or removing
what features can reduce its phishing score based on the cracking
result presented in Section 3. If a feature can provide negative
contributions to the phishing scoring for a page, we call it as a
good feature from the adversary’s point of view. On the contrary,
if a feature only has positive contributions, we call it a bad feature.
Correspondingly, we design two kinds of evasion attacks, good
features insertion and bad features elimination. The basic idea
behind them is to add or remove appropriate good or bad features
into or from a phishing page to make its phishing score lower than
the threshold, resulting in a misclassification. The latest 100 real
phishing pages are collected from PhishTank as the attack dataset.
We will try to use the two evasion attacks to manipulate them to
evade the detection of GPPF. To minimize the potential side-
effects, we will use pseudonyms when referring to specific good
features or bad features in the following part of this section.

4.1 Good Features Insertion
Given a phishing page, there may be many features can be
leveraged to reduce its phishing score. By utilizing plenty of
negative rules having been completely reverse engineered; we can
adopt a very primitive but effective way to choose desirable good
features. In fact, we can sort all negative rules only with one
recovered feature by their weights, and directly use the features of
top-weighted rules as good feature candidates for all target pages.
More surprisingly, for many phishing pages in the dataset, we can
easily convert them to legitimate pages only by inserting just one
such good feature. Moreover, as detailed in Table 8, we find that
only using one kind of good feature can also be effective. For
example, we can reduce the scores of all test pages lower than
0.50 by inserting at most six good DOM features into the page.
On average, 2.2 good DOM features are required.

It should be noted that a sophisticated adversary can carefully
introduce the good features to preserve the utility of phishing
pages. For example, to prevent the inserted terms from attracting
the attention, their color can be set to background color.

After introducing above good features, the manipulated test pages
are deployed in our Web server. We then use the latest version of
Chrome (45.0.2454) to visit them one by one to check whether
they can successfully evade the detection of GPPF. We find all
the dressed-up pages (100%) are regarded as legitimate pages and
display properly in the browser. For example, there is a phishing
page to imitate the login page of Chase Bank. When browsing it,
the Chrome can successfully block it as a phishing page and jump
to the warning page as shown in Figure 2. In fact, the page is
given a very high phishing score 0.9986. However, after inserting
six good term features T1 ~ T6 into its text, the score is reduced to
only 0.2784. As a result, the dressed-up page can be normally
visited with Chrome as shown in Figure 4.

4.2 Bad Features Elimination
Compared with the good features insertion, selecting proper bad
features from a given phishing page to perform an effective
evasion attack is not a trivial task. The number of available bad

Table 7. Decrypting the term features with CJK ideographs

Term Size Candidate Words Decrypted Time

1-word 1-ideograph to
3-ideograph

31 1 minute

2-word 1-ideograph to
3-ideograph

7 < 1 minute

3-word 1-ideograph to
3-ideograph

2 < 1 minute

4-word 1-ideograph to
3-ideograph

0 2 minute

Sum 40 5 minutes

Figure 4. The dressed-up phishing page can evade GPPF.

Table 8. The required number of Good features

Feature MIN MAX Average

URL 1 10 2.5

DOM 1 6 2.2

Term 1 17 3.7

8

features is limited for a given page. Additionally, some features
can be referred by multiple scoring rules. A feature may be not
only present in a positive rule but also in a negative rule. Directly
removing the features in positive rules may also result in some
negative rules losing their efficacy.

To this end, we design a search-based method to automatically
select proper bad features for a given page. Specifically, we
implement a script to compute the contribution of one feature or a
feature set to the final score, by removing it or them from the
page and re-computing the score. For a given page, we apply the
script to all its recovered features to search a feature or a feature
set whose contribution is enough to the exploitation. Namely,
after removing the feature(s), the score of the page will be lower
than the threshold, allowing it to be classified as a legitimate page.

With the method, we successfully find proper bad features for
every test page respectively. By eliminating corresponding bad
features from the pages respectively, all test pages (100%) can
evade the classification and normally display in Chrome. Take the
phishing page shown in Figure 4 as an example. We find four bad
term features BT1 ~ BT4 for it and eliminate them with some
obfuscation techniques, such as changing a word from singular to
plural form. As a result, we succeed in reducing its score from
0.9986 to 0.4591 and dressing it up as a legitimate page. In the
experiment, we find that removing at most five bad features is
enough to make the page evade the classifier. On average, 3.1 bad
DOM features are required.

5. MITIGATION
Google developers have discussed the potential adversarial
attacks that GPPF might encounter [56]. They believe that
possible attacks on GPPF are either limited or expensive. From
their point of view, the adversary who tries to evade GPPF by
disguising the phishing page as a legitimate one cannot preserve
its utility and visual similarity at the same time. However, thanks
to the cracking results, we can purposely introduce some easy-to-
hide good features to evade GPPF with a very low cost. For
example, we are able to make the newly added term features
invisible by setting their color to background color of the target
page.

In practical applications, GPPF is proved to be a very valuable
tool against phishing attacks under the non-adversarial
environment. Tens of thousands phishing sites are detected by
Safe Browsing per week [6]. To this end, the developers may
want to improve its robust as well as change the architecture as
little as possible. A natural and direct idea is to select the features
difficult to being recovered by brute force attacks. For example,
the developers can just select the comparative long phrases, 5-
word phrases or even longer, as the term features. This would
result in a combinatorial explosion when the adversary performs a
blind brute force attack for cracking. The computation of
enumerating and hashing all possible compounds of five words is
unacceptable. Unfortunately, this idea is not effective enough
when the adversary is aware of the feature extraction method. In
fact, the adversary can still reverse engineer sufficient features by
collecting appropriate page-related data as test cases to perform a
collision attacks. The adversary can take the data as a web page to
extract the possible word sequences according to the feature
extraction method, and hash the sequences to check whether they
are a term feature. For a concrete feature extraction method, the
amount of sequences is actually limited regardless of how long
the sequence is. Given appropriate test cases, the adversaries have

a fair chance to find sufficient collision instances. As presented in
Section 3.2.2, we recover 292 (67.9%) term features only using
seven full-text corpora in 8.8 hours. These features are already
enough for evasion attacks.

Based on above discussions, we can learn that the most effective
defense way is to essentially increase the complexity of reverse
engineering the classification model, especially the semantics of
features. To effective solve this problem, we propose a potential
defense strategy: employing deep learning method to construct
naturally robust client-side classifiers.

Deep learning, as a novel powerful machine learning method, has
been widely applied in fields of multimedia, natural language
procedure, data mining, etc. Based on the basic thoughts of deep
learning, especially the layer-wise learning and fine tuning, some
powerful deep neural networks such as LeNet [38], stacked auto-
encoder (SAE) [44] and deep belief net (DBN) [10][30], have
been proposed to detect high level features and produce
complicated decision functions [10].

In deep learning method, gradually from the low layers to the
high layers, deep neural networks (DNN) could realize efficiently
feature extractions. Generally, the features imported into the low
layers are the raw data describing the basic original properties of
the problem instances. After the effect of multiple layers
abstraction, the features extracted from high layers possess
complicate semantic information, which is hard to be
comprehended for researchers [54]. In other words, no one could
exactly explain the mapping between the raw data and the high
level features.

For an instance, as shown in Figure 5, the deep convolutional
neural network (DCNN) proposed by Hinton [37] could classify
the 1.2 million high-resolution images in the ImageNet LSVRC-
2010 contest into 1,000 different classes. The DCNN has eight
learning layers, i.e., five convolutional and three fully-connected.
The network adopts several effective strategies, such as ReLU
nonlinearity, max pooling, dropout and local response
normalization, to increase its classifier ability. This enhances
DCNN complexity. In detail, the input data are RGB images with
224*224 pixels. The last fully-connected layers output the high
level features with 4,096 dimensions. As a result, every
dimension in the high level features is relative with all dimensions
of the inputting image. The weight connections among layers,
partially embedded with non-linear activation functions, are
greatly complicated and huge (almost millions). Consequently,
even though researchers have grasped the meaning of one specific
dimension in the highest layer, they could not find a feasible
method that corresponds to modify partial dimensions of the raw
data, and meanwhile affect only the specific dimension. This
characteristic of deep learning is especially fit for building a
robust classifier to against classifiers cracking.

Similarly, we can build a phishing pages classifier based on the
deep learning method, to make it hard to be reverse engineered
by analyzing its implementation and configurations. As shown in
Figure 6, the classifier has n layers, i.e., n-1 layers for feature
extraction, and one for classification. The classifier has been
trained off-line and deployed in the client-side. The raw html
represented as a large sparse feature vector, e.g., the features of
bag-of-words model [35], is imported into the first layer L1
originally. The feature vector is transformed by several functions,
e.g. long short term memory (LSTM) [28], max pooling, and
sigmoid activation, in different layers to produce high level

9

features in high layers. The features, output as high abstractive
properties in layer Ln-1, are exported to the classification
algorithm (as Ln). The final classification algorithm can be non-
linear or linear. The original features are eventually transformed
to the final high level features with n-2 times of complex many-
to-many mapping. As a result, the complex relationship among
them heavily increases the difficulties of inferring the original
features from the final ones.

When the classification model is cracked by the adversary, even
though the deep architecture is completely recovered, the
complexity of feature mappings can still effectively ensure the
robust of the classification. In fact, the feature extraction in
classifier can be regarded as a black-box in applications, which
performs complex non-linear transforms with mutual affection of
multiple layers weight connections. The amount of weight
connections are millions, as exhibited in [55]. This makes it
impossible for the adversary to figure out the exploitable
relationships among the input and output features. We have
reasons to believe that the deep learning method inherently has
the energy to against classifiers cracking.

6. DISSCUSSION
In this study, we present an attack methodology, classifiers
cracking, aiming at client-side classifiers and successfully
demonstrate its effectiveness with a widely-used classifier, GPPF.
In theory, the methodology is generic and applicable to other
client-side classifiers. However, when applying the methodology
to a specific classifier, we need to develop a specially designed
crack techniques according to its implementation. In fact, there
are many classifiers equipped with different classification
algorithms, such as [7][40]. To further demonstrate the security
challenges brought by classifiers cracking, in the future, we will
pay attention to some other types of classifiers and investigate
their security from the point of cracking. These classifiers may
take security into consideration to different extents and be
deployed in different ways. More reverse engineer techniques
may need to be employed to crack them.

As described in Section 3 and 4, we eventually completely
reverse engineer 84.8% scoring rules of the GPPF classification
model, which is proved to be sufficient for launching effective

evasion attacks. However, in fact, we can get better cracking
results by introducing more appropriate corpora. For example,
using a comprehensive database of history phishing pages can
decrypt more term features. Sometimes, the adversary may want
to get perfect knowledge about a classifier for some special
purposes, such as stealing its techniques to reengineer a new
classifier. Besides, it needs to be emphasized that some seemingly
unrelated dataset, e.g., a corpus, can also be leveraged to
compromise the security of client-side classifiers. The developers
should collect as much as possible dataset, especially publicly
available, to evaluate the robust of their classifier before releasing
it.

We have got sufficient knowledge about the GPPF classification
model by cracking it. This allows us to easily find exploitable
good and bad features for a given page. In this study, it is not
necessary to design a sophisticated algorithm to more effectively
and efficiently find exploitable features. However, if the
adversary has only limited knowledge about the target classifier,
she can develop a powerful algorithm to discover exploitable
features. Furthermore, in theory, combining the good features
insertion and bad features elimination can produce better
performance. It is also helpful for the adversary to attack a
classifier. To this end, developers should prevent the information
of their classifier from being inferred by the adversaries as far as
possible.

7. RELATED WORK
Many existing studies have paid much attention to the security of
classifiers, and the arm race between adversaries and defenders
will never end.

Attacks. The attacks can be categorized into two types by their
influences: causative attacks and exploratory attacks.

In causative attacks, the adversary has the chances to affect the
training process by contaminating training data (e.g. injecting
many specially crafted samples). This kind of attack has been
used to degrade the performance of a lot of learning-based
applications, such as biometric authentication [16][18], spam
filtering [45], and network intrusion detection [34][49]. In [16], a
method is proposed to mislead an adaptive biometric system to
perform self-update by submitting a proper sequence of spoofed
biometric traits to the sensor and cause a misclassification

…

Pages

…

Legitimate

Phishing

…

…

…

…

Ln-1

Features

LSTM

L1 L2 L3 …

Feature
Extraction

Phishing Pages Classifier

Classification
Algorithm

Ln

Figure 6. DNN model for phishing pages classification.

dense

48
Max pooling

3

Input layer

128

…

224

224

11
11

11
11

5

55

55

27

3

3

3 27

3

…

48

5
5

55

55

27

3

3

3 27

3

128
2048 2048

2048 2048

1000

Full connections

5

Figure 5. The deep architecture adopted in DCNN for
ImageNet classification.

10

eventually. A further work [18] reveals that poisoning attacks can
be used to compromise face templates in a more general case.
Another study [45] succeeds in exploiting machine learning to
compromise a spam filter by manipulating the filter’s training
data. They proposed two kinds of poisoning attacks by inserting
different sets of words into attack emails: dictionary attacks inject
words indicative of legitimate emails to increase
misclassifications, and focused attack tries to introduce words to
have the filter block one specific kind of emails (e.g. emails from
business rivals). Besides, as discussed in [20][34][49], the
intrusion detection systems may also be vulnerable to causative
attacks. The adversary can inject carefully crafted malicious
traffic samples into training dataset and finally force the classifier
to learn a wrong model of the normal traffic.

In exploratory attacks, the adversary tries to figure out as much
knowledge (e.g. type of classifier, features, and threshold) of the
classifiers as possible to effectively evade them. Exploratory
attacks have been applied to various security applications. Lowd
and Meek conduct an attack that minimizes a cost function [42].
They further propose attacks against statistical spam filters that
add the words indicative of non-spam emails to spam emails [41].
The same strategy is employed in [45]. In [43], a simple but
effective attack methodology called reverse mimicry is designed
to evade structural PDF malware detection systems. The main
idea is injecting malicious content into a legitimate PDF while
introducing minimum differences within its structure. The related
experiments show that some very popular classification
algorithms (e.g. SVMs and neural networks) can also be evaded
with this method. A recent work [51] uses PDFRATE, an online
learning-based system for detection of PDF malware, as a case to
investigate the effectiveness of evasion attacks. The study
reconstructs a similar classifier through training one of the
publicly available datasets by a few deduced features, and then
evaded PDFRATE by insertion of dummy content into PDF files.
Additionally, in [17], a simple algorithm is proposed for evasion
of classifiers with differentiable discriminant functions. The study
empirically demonstrated that very popular classification
algorithms, e.g., SVMs and neural networks, can still be evaded
with high probability even if the adversary can only learn limited
knowledge.

Unfortunately, to our best knowledge, all of the existing studies
don't pay any special attention to the client-side classifiers. As
demonstrated in this study, the client-side classifiers have a larger
attack surface and hence larger number of potential attacks.

Defenses. Many countermeasures against evasion attacks have
been proposed, such as using game theory [21][22] or
probabilistic models [15][48] to predicted attack strategy to
construct more robust classifiers, employing multiple classifier
systems (MCSs) [12][13][14] to increase the difficulty of evasion,
and optimizing feature selection [29][36] to make the features
evenly distributed.

Game-theoretical approaches [21][22] model the interactions
between the adversary and the classifier as a game. The
adversary’s goal is to evade detection by minimally manipulating
the attack instances, while the classifier is retrained to correctly
classify them. However, the retraining procedure is very
expensive in the situation where the classifier is cracked. The
adversary always can construct an attack instance to evade the
current classifier. Similarly, for approaches based on probabilistic
models [15][48], the adversary can also easily construct a hard-to-
predict attack instance based on cracked knowledge.

MCSs [12][13][14], as the name suggests, use multiple classifiers
rather than only one to improve classifier’s robustness. The
adversaries who want to effectively evade the classification have
to fight with more than one classifier. Although MCSs actually
increases the workload of classifiers cracking, it doesn’t improve
the security of client-side classifiers fundamentally.

In [29], the method weight evenness via feature selection
optimization is proposed. By appropriate feature selection, the
weight of every feature is evenly distributed, thus the adversaries
have to manipulate a larger number of features to evade detection.
In [36], the features are reweighted inversely proportional to their
corresponding importance, making it difficult for the adversary to
exploit the features. However, given sufficient knowledge, the
adversary can easily find enough exploitable features. Besides, in
many cases, the adversary can hide the manipulation very deeply
without attracting the attention. For example, a phisher can
leverage various HTML techniques to make good features
invisible.

These defense techniques are built on the assumption that the
classification model is kept confidential to the adversary or can be
updated timely. However, when the adversary learned sufficient
knowledge by cracking classifiers, they can easily and quickly
construct effective evasion attacks targeted to the defense
techniques.

8. CONCLUSIONS
In this paper, we presented a new attack methodology, classifier
cracking, for evading the client-side classifier. Our approach is
different from existing attack methods is that various reverse
engineering techniques are leveraged to directly extract desirable
knowledge from client-side classifier for launching evasion
attacks. Our study took GPPF, a learning-based filter for phishing
pages deployed in Chrome as a case to study, which owns over
one billion users. Employing various reverse engineering
techniques, we successfully crack the GPPF model and
completely recovered 84.8% encrypted scoring rules. Based on
the information, we developed two kinds of evasion attacks: good
features insertion and bad features elimination. The latest 100
real phishing pages collected from PhishTank were taken as the
target of evaluation. The attack experiments showed that we can
easily manipulate all the phishing pages (100%) to make them
successfully evade the detection of GPPF in the latest version of
Chrome. Additionally, a potential defense strategy was also
discussed. We believe that the deep learning method can be
employed to build client-side classifiers for essentially increasing
the complexity of cracking.

Our research revealed an important fact that the client-side
classifiers have a larger attack surface and hence larger number of
potential attacks. In the future, we will further research potential
defense techniques, especially based on the deep learning method,
to develop more robust client-side classifier framework.

9. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their insightful comments. The work is supported by National
Natural Science Foundation of China (NSFC) under grants
61170240, 91418206 and 61472429, and National Science and
Technology Major Project of China under grant 2012ZX01039-
004.

11

10. REFERENCES
[1] Google has over a billion users of Android, Chrome,

YouTube, and search.
http://www.theverge.com/2015/5/28/8676599/google-io-
2015-vital-statistics

[2] PhishTank. https://www.phishtank.com/

[3] Phishing Attack Trends Report of the 4th Quarter in 2014.
http://docs.apwg.org/reports/apwg_trends_report_q4_2014.p
df

[4] Design Documents of Safe Browsing.
http://www.Chromium.org/developers/design-
documents/safebrowsing

[5] Market share of popular web browsers from Aug 2014 to
Aug 2015.

 http://gs.statcounter.com/#browser-ww-monthly-201408-
201508

[6] Google’s Safe Browsing service protects 1 billion Chrome,
Firefox, and Safari users from malware and phishing.
http://thenextweb.com/google/2013/06/25/googles-safe-
browsing-service-now-protects-1-billion-Chrome-firefox-
and-safari-users-from-malware-and-phishing/

[7] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis,
C. D. Spyropoulos, and P. Stamatopoulos. Learning to filter
spam e-mail: A comparison of a naive bayesian and a
memory-based approach. In Proceedings of the Workshop on
Machine Learning and Textual Information Access. 2000.

[8] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D.
Tygar. Can machine learning be secure?. In Proceedings of
the 2006 ACM Symposium on Information, Computer and
Communications Security. ASIACCS’2006. ACM, 16–25.

[9] M. Barreno, B. Nelson, A. Joseph, and J. Tygar. The security
of machine learning. Machine Learning. 2010. Springer,
121–148.

[10] Y. Bengio. Learning deep architectures for AI. 2009.
Foundations and trends® in Machine Learning, 2(1), 1-127.

[11] B. Biggio, G. Fumera, and F. Roli. Adversarial pattern
classification using multiple classifiers and randomization. In
Proceedings of the 2008 Joint IAPR International
Conference on Structural, Syntactic, and Statistical Pattern
Recognition. SPR’2008. Springer, 500-509.

[12] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems for adversarial classification tasks. In Proceedings of
the 8th International Workshop on Multiple Classifier
Systems. MCS’2009. Springer, 132-141.

[13] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems for robust classifier design in adversarial
environments. 2010. International Journal of Machine
Learning and Cybernetics, 1(1-4), 27-41.

[14] B. Biggio, G. Fumera, and F. Roli. Multiple classifier
systems under attack. In Proceedings of the 9th International
Workshop on Multiple Classifier Systems. MCS’2010.
Springer, 74-83.

[15] B. Biggio, G. Fumera, and F. Roli. Design of robust
classifiers for adversarial environments. In Proceedings of
the 2011 IEEE International Conference on Systems, Man,
and Cybernetics (SMC). SMC’2011. IEEE, 977-982.

[16] B. Biggio, G. Fumera, F. Roli, and L. Didaci. Poisoning
adaptive biometric systems. In Proceedings of the 2012 Joint
IAPR International Conference on Structural, Syntactic, and
Statistical Pattern Recognition. SPR’2012. Springer, 417–
425.

[17] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P.
Laskov, G. Giacintoet , and F. Roli. Evasion attacks against
machine learning at test time. Machine Learning and
Knowledge Discovery in Databases. 2013. Springer, 387-402.

[18] B. Biggio, L. Didaci, G. Fumera, and F. Roli. Poisoning
attacks to compromise face templates. In Proceedings of the
2013 International Conference on Biometrics Compendium.
2013.

[19] B. Biggio, I. Pillai, S. R. Bulò, D. Ariu, M. Pelillo, and F.
Roli. Is data clustering in adversarial settings secure?. In
Proceedings of the 6th ACM Workshop on Artificial
Intelligence and Security. AISec’2013. ACM, 87–98.

[20] B. Biggio, G. Fumera, and F. Roli. Security evaluation of
pattern classifiers under attack. In Proceedings of IEEE
Transactions on Knowledge and Data Engineering.
TKDE’2014. IEEE, 26(4): 984–996.

[21] M. Brückner and T. Scheffer. Stackelberg games for
adversarial prediction problems. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining. KDD’2011. ACM, 547-555.

[22] M. Brückner, C. Kanzow, and T. Scheffer. Static prediction
games for adversarial learning problems. 2012. The Journal
of Machine Learning Research, 13(1), 2617-2654

[23] D. Canali, M. Cova, G. Vigna and C. Kruegel. Prophiler: a
fast filter for the large-scale detection of malicious web
pages. In Proceedings of the 20th International Conference
on World Wide Web. WWW ’2011. ACM, 197-206.

[24] Y. Cao, W. Han, and Y. Le. Anti-phishing based on
automated individual white-list. In Proceedings of the 4th
ACM Workshop on Digital Identity Management. DIM ’2008.
ACM, 51–60.

[25] N. Chou, R. Ledesma, Y. Teraguchi, and J. C. Mitchell.
Client-side defense against web-based identity theft. In
Proceedings of the Network and Distributed System Security
Symposium. NDSS’2004.

[26] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma.
Adversarial classification. In Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD’2004. ACM, 99-108.

[27] A. Y. Fu, W. Liu, and X. Deng. Detecting phishing web
pages with visual similarity assessment based on earth
mover’s distance (EMD). In Proceedings of IEEE
Transaction on Dependable Secure Computing. TDSC’2006.
IEEE, 301–311.

[28] F. A. Gers and J. Schmidhuber. LSTM recurrent networks
learn simple context free and context sensitive languages. In
Proceedings of IEEE Transactions on Neural Networks.
2001. IEEE, 12(6):1333–1340.

[29] A. Globerson and S. Roweis. Nightmare at test time: robust
learning by feature deletion. In Proceedings of the 23rd
International Conference on Machine Learning. ICML’2006.
ACM, 353-360.

12

[30] G. E. Hinton, S. Osindero, and Y. -W. Teh. A Fast Learning
Algorithm for Deep Belief Nets. Neural Computation. 2006.
MIT Press, 18(2):1527–1554.

[31] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring
and detecting fast-flux service networks. In Proceedings of
the Network and Distributed System Security Symposium.
NDSS’2008.

[32] L. Huang, A. D. Joseph, B. Nelson, B. Rubinstein, and J. D.
Tygar. Adversarial machine learning. In Proceedings of the
4th ACM Workshop on Artificial Intelligence and Security.
AISec’2011. ACM, 43–58.

[33] M. Khonji, Y. Iraqi, and A. Jones. Phishing detection: a
literature survey. Communications Surveys & Tutorials. 2013.
IEEE, 15(4): 2091-2121.

[34] P. Kloft and M. Laskov. A “poisoning” attack against online
anomaly detection. In Proceedings of Neural Information
Processing Systems (NIPS) workshop on Machine Learning
in Adversarial Environments for Computer Security. 2007.

[35] Y. Ko. A study of term weighting schemes using class
information for text classification. In Proceedings of the 35th
International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR’2012. ACM,
1029-1030.

[36] A. Kołcz and C. H. Teo. Feature weighting for improved
classifier robustness. In Proceedings of the 6th Conference
on Email and Anti-Spam. CEAS’2009.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Proceedings of Neural Information Processing Systems.
NIPS’2012. MIT Press, 1097–1105.

[38] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for
generic object recognition with invariance to pose and
lighting. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.
CVPR’2004. IEEE, 97-104.

[39] P. Likarish, D. Dunbar, and T. E. Hansen. B-apt: Bayesian
anti-phishing toolbar. In Proceedings of IEEE International
Conference on Communications. ICC ’2008. IEEE, 1745-
1749.

[40] O. Linda, T. Vollmer, and M. Manic. Neural network based
intrusion detection system for critical infrastructures. In
Proceedings of the 2009 International Joint Conference on
Neural Networks. IJCNN’2009. IEEE, 1827-1834.

[41] D. Lowd and C. Meek. Good word attacks on statistical
spam filters. In Proceedings of the 2nd Conference on Email
Anti-Spam. 2005.

[42] D. Lowd and C. Meek. Adversarial learning. In Proceedings
of the 11th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining. KDD’2005. ACM,
641-647.

[43] D. Maiorca, I. Corona, and G. Giacinto. Looking at the bag
is not enough to find the bomb: an evasion of structural
methods for malicious pdf files detection. In Proceedings of
the 8th ACM SIGSAC symposium on Information, Computer
and Communications Security. ASIACCS’2013. ACM, 119-
130.

[44] J. Masci, U. Meier, and D. Cire. Stacked convolutional auto-
encoders for hierarchical feature extraction. In Proceedings

of the 21st International Conference on Artificial Neural
Networks. ICANN’2011. Springer, 52–59.

[45] B. Nelson, M. Barreno, F.J. Chi, A. D. Joseph, B. I. P.
Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia.
Exploiting machine learning to subvert your spam filter.
2008.

[46] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta.
Phishnet: predictive blacklisting to detect phishing attacks.
In Proceedings of the 29th Conference on Information
Communications. INFOCOM’2010. IEEE, 346–350.

[47] M. A. Rajab, L. Ballard, N. Lutz, P. Mavrommatis, and N.
Provos. CAMP: Content-agnostic malware protection. In
Proceedings of the Network and Distributed System Security
Symposium. NDSS’2013.

[48] R. N. Rodrigues, L. L. Ling, and V. Govindaraju. Robustness
of multimodal biometric fusion methods against spoof
attacks. 2009. Journal of Visual Languages & Computing,
169–179.

[49] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.
Lau, S. Rao, N. Taft, and J. D. Tygar. Stealthy poisoning
attacks on PCA-based anomaly detectors. ACM
SIGMETRICS Performance Evaluation Review. 2009. ACM,
37(2): 73-74.

[50] G. Salton and M. J. McGill. Introduction to modern
information retrieval. 1983.

[51] N. Šrndić and P. Laskov. Practical evasion of a learning-
based classifier: A case study. In Proceedings of the 2014
IEEE Symposium on Security and Privacy. SP’2014. IEEE,
197-211.

[52] F. Toolan and J. Carthy. Phishing detection using classifier
ensembles. eCrime Researchers Summit. eCRIME ’2009.

[53] K. Tretyakov. Machine learning techniques in spam
filtering. Data Mining Problem-oriented Seminar. 2004.
MTAT, 60-79.

[54] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th International
Conference on Machine Learning. ICML’2008. ACM, 1096–
1103.

[55] K. Wang, X. Wang, L. Lin, M. Wang, and W. Zuo. 3D
human activity recognition with reconfigurable
convolutional neural networks. In Proceedings of the ACM
International Conference on Multimedia. MM ’2014. ACM,
97–106.

[56] C. Whittaker, B. Ryner, and M. Nazif. Large-scale automatic
classification of phishing pages. In Proceedings of the
Network and Distributed System Security Symposium.
NDSS’2010.

[57] Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a content-
based approach to detecting phishing web sites. In
Proceedings of the 16th International Conference on World
Wide Web. WWW ’2007. ACM, 639–648.

[58] H. Zhang, G. Liu, T. Chow, and W. Liu. Textual and visual
content based anti-phishing: A bayesian approach. In
Proceedings of IEEE Transactions on Neural Networks.
2011. IEEE, 1532–1546.

