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ABSTRACT

The evolution of recent malware, characterized by the escalating

use of cloaking techniques, poses a signi�cant challenge in the

analysis of malware behaviors. Researchers proposed forced execu-

tion to penetrate malware’s self-protection mechanisms and expose

hidden behaviors, by forcefully setting certain branch outcomes.

Existing studies focus on enhancing the forced executor to provide

light-weight crash-free execution models. However, insu�cient at-

tention has been directed toward the path exploration strategy, an

aspect equally crucial to the e�ectiveness. Linear search employed

in state-of-the-art forced execution tools exhibits inherent limita-

tions that lead to unnecessary path exploration and incomplete

behavior exposure. In this paper, we propose a novel and practical

path exploration strategy that focuses on the coverage of de�ne-

use relations in the subject binary. We develop a fuzzing approach

for exploring these de�ne-use relations in a progressive and self-

supervised way. Our experimental results show that the proposed

solution outperforms the existing forced execution tools in both

memory dependence coverage and malware behavior exposure.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation; • Soft-

ware and its engineering;
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1 INTRODUCTION

Malware poses a persistent and signi�cant threat to individuals,

organizations, and even nations. Recent statistics show that mal-

ware is responsible for 80% of cyber-attacks across the globe [14],

causing $10.5 trillion �nancial loss per year [6]. In order to e�ec-

tively defend malware, the security community needs to perform

a critical task of analyzing malware behaviors. However, it is dif-

�cult to fully disclose malware behaviors via plain execution in

a sandbox [3, 5], as malware authors are increasingly focused on

developing stealthy malwares that leave lighter footprints [2, 4, 8].

Speci�cally, a malware often requires a speci�c execution envi-

ronment or setup, which may be absent (e.g., the command and

control server is down and a critical registry key is missing). In

addition, recent malware often de�nes very speci�c conditions (e.g.,

time-bomb and logic-bomb) to release payload. Some sophisticated

samples even use cloaking techniques (e.g., packing and VM/debug-

ger detectors) to prevent execution upon the presence of analysis

environment.

To penetrate malware self-protection and expose hidden behav-

iors, researchers proposed a technique called forced execution that

works by forcefully setting certain branch outcomes. Since forcing

execution paths could lead to corrupted states and hence excep-

tions, the primary challenge lies in ensuring crash-free execution.

X-Force [40] achieves this in a heavy-weight manner that allo-

cates a new memory block on demand upon any invalid pointer

dereference. It requires tracing individual memory and arithmetic

instructions, reasoning about pointer alias relations, and repair-

ing invalid pointers on-the-�y. PMP [52] adopts a light-weight

approach that pre-allocates a large memory region and �lls the re-

gion with carefully crafted random values before execution. These

values are designed in such a way that dereferencing an invalid
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1 #define REG_URL " r egu l a r − s i t e . com "

2 #define MAL_URL " ma l i c i ou s − s i t e . com "

3 #define VALUE " ScreenRibbonsDomain "

4 #define KEY "SOFTWARE \ \ . . . \ \ S c r e enSav e r s \ \ "

5 #define DEST_PATH "C : \ \ . . . \ \ Roaming \ \ e s e t _ upd a t e . exe "

6 #define LEN 0 x104

7

8 typedef enum {

9 OP_NONE ,

10 OP_DOWNLD,

11 . . .

12 } Opcode ;

13

14 typedef s t ruc t {

15 in t op ;

16 char arg [LEN ] ,

17 u r l [LEN ] ;

18 } Command ;

19

20 Command cmd ;

21 HKEY phk ;

22 char f i l e _ p a t h [LEN ] , exe_pa th [LEN ] , msg [LEN ] ;

23 in t main ( ) {

24 exe_pa th = g e t _ c u r r e n t _ p a t h ( ) ;

25 i f ( s t rcmp ( exe_path , DEST_PATH ) )

26 CopyF i l e ( exe_path , DEST_PATH ) ;

27 i f ( RegOpenKeyEx ( . . . , KEY , . . . , &phk ) == OK) {

28 i f ( RegQueryValueEx ( phk , VALUE , &cmd . u r l , . . . ) != OK) {

29 memset ( cmd , 0 , s i z eo f ( cmd ) ) ;

30 s t r c p y ( cmd . u r l , MAL_URL ) ;

31 }

32 }

33 i f ( ! is_inVM ( ) ) {

34 I n t e r n e tConne c t ( . . . , cmd . u r l , . . . ) ;

35 I n t e r n e t R e a d F i l e ( . . . , msg , LEN , . . . ) ;

36 f i l l _ command ( cmd , msg ) ;

37 i f ( cmd . op == OP_DOWNLOAD)

38 do_download ( cmd . arg ) ;

39 e l se

40 do_execu te ( cmd . arg ) ;

41 }

42 e l se

43 In t e rn e tOpenUr l ( cmd . u r l ) ;

44 }

Figure 1: Motivating example.

pointer has a very large chance to fall into the pre-allocated region

and semantically unrelated invalid pointer dereferences are highly

likely to access disjoint pre-allocated regions. In this way, PMP

avoids state corruptions with probabilistic guarantees.

While signi�cant e�ort has been dedicated to crash-free exe-

cution, less attention has been given to path exploration, another

important aspect that in�uences the analysis result. In essence,

path exploration is a search process that aims to traverse di�erent

parts of the subject binary. Since the search space of all possible

paths is extremely large for real-world binaries, the state-of-the-art

forced execution studies primarily depend on a linear search algo-

rithm [40, 52]. The objective is to cover control �ow graph edges

by progressively switching additional/di�erent branch outcomes

based on the results of previous iterations.

Although simple and e�ective, linear search has inherent limita-

tions. On one hand, it may explore a considerable number of unneces-

sary paths that do not introduce new program behaviors compared

with previous iterations. On the other hand, it may capture incom-

plete program behaviors because certain paths remain unexplored.

The fundamental reason is that linear search forcefully alters con-

trol �ow without considering data �ow, potentially missing critical

data-�ow or inducing infeasible data-�ow, both a�ecting the �nal

exposed malware behaviors. For example, corrupted data-�ow may

lead to incorrect system call parameters critical for understanding

malware behaviors. For better forced execution, a data-�ow aware

path exploration strategy is imperative.

Since de�ne-use relations are crucial for data �ow, it is natural to

leverage them as a guidance for path exploration. A straightforward

way is to utilize the existing dependence analysis approaches (e.g.,

BDA [54] and VSA [18]) to identify a set of de�ne-use relations and

force the program paths to cover the identi�ed ones. Unfortunately,

these approaches are conservative, generating a large number of

bogus de�ne-use relations that misguide the path exploration. The

issues of unnecessary path exploration and incomplete behavior

exposure would be even worse than linear search.

In this paper, we propose a novel and practical path exploration

strategy, called DueForce (de�ne-use guided path exploration for

forced execution), which focuses on the coverage of de�ne-use

relations (instead of control �ow graph edges) in the subject binary.

Rather than utilizing conservative dependence analysis, DueForce

generates the de�ne-use relations in a progressive and self-supervised

way. Speci�cally, DueForce fuzzes the subject binary by changing

the forced branches in the executor. During the fuzzing process,

DueForce collects the exercised de�ne-use relations for predicting

new ones to cover. The predicted ones are then used as guidance

for further exploration.

To assess DueForce’s e�ectiveness, we evaluate it with the

SPEC2000 benchmark suite (12 programs of di�erent scales) and

200 recent real-world malware samples (100 on Linux and 100

on Windows). The evaluation results demonstrate that DueForce

signi�cantly improves the analysis outcomes of forced execution.

Compared to PMP, DueForce achieves a 25.78% higher recall in

memory dependence detection and 44.16% higher rate of useful

executions, and can expose 167.50% more malicious behaviors for

malware analysis. Compared to the path exploration using con-

servative analysis, DueForce achieves a 305.89% higher recall in

memory dependence detection and 331.02% higher rate of useful

executions, and can expose 174.76% more malicious behaviors.

This paper makes the following contributions:

• We identify the limitations of path exploration strategy com-

monly used in existing forced execution engines. These limi-

tations are illustrated through a motivating example simpli-

�ed from a real-world malware sample.

• We propose a novel and practical de�ne-use guided path

exploration strategy for better forced execution. Following

the de�ne-use guidance, we can e�ectively overcome the

aforementioned limitations.

• We implement a prototype system and evaluate its e�ective-

ness. The experimental data and source code are available at

https://github.com/DueForce/DueForce.

2 MOTIVATION

We use an example to illustrate limitations of linear search and mo-

tivate the idea of DueForce. Figure 1 simulates malicious behaviors

of a real-world command and control (C&C) malware sample [9].
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43. InternetOpenUrl(cmd.url);

37. if (cmd.op == OP_DOWNLOAD)

29. memset(cmd, 0, sizeof(cmd));
30. strcpy(cmd.url, MAL_URL);

28. if(RegQueryValueEx(...,&cmd.url,...)!=OK)

24. exe_path = get_current_path();  
25. if (strcmp(exe_path, DEST_PATH)) {

26. CopyFile(exe_path, DEST_PATH);

27. if (RegOpenKeyEx(...) == OK) {

34. InternetConnect(..., cmd.url,...);
35. InternetReadFile(..., msg, LEN, ...);
36. fill_command(cmd, msg);

33. if (!is_inVM())

Scheme → [] 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝟏
Trace      → [①,②,③,④,⑥,⑪]

Behavior → CopyFile(), RegOpenKey(), RegQueryValueEx(),

InternetOpenUrl(...,REG_URL,...)

Scheme → [<⑥:⑦>, <⑧:⑩>] 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝟑
Trace      → [①,②,③,④,⑥,⑦,⑧,⑩]

Behavior → InternetReadFile(), RegOpenKey(), RegQueryValueEx(), CopyFile(),

HttpOpenRequest(), InternetConnect(..., REG_URL,...)

Scheme → [<⑥:⑦>] 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝟐
Trace      → [①,②,③,④,⑥,⑦,⑧,⑨]

Behavior → InternetReadFile(),RegQueryValueEx(),

RegOpenKeyEx(), CopyFile(), InternetConnect(...,REG_URL,...)

Scheme → [<①:③>] 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝟔
Trace      → [①,③,④,⑥,⑪]

Behavior → CopyFile(), RegOpenKey(), RegQueryValueEx(),

InternetOpenUrl(...,REG_URL,...)

Scheme → [<④:⑤>] 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝟒
Trace      → [①,②,③,④,⑤,⑥,⑪]

Behavior → InternetReadFile(), RegQueryValueEx(), RegOpenKey(), CopyFile(), 

InternetOpenUrl(...,MAL_URL,...)

Scheme → [<③:⑥>] 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝟓
Trace      → [①,②,③,⑥,⑪] 

Behavior → CopyFile(), RegOpenKey(), RegQueryValueEx(), 

InternetOpenUrl(...,Invalid,...)

⑥

⑦

③

①

②

⑤

④

40. do_execute(cmd.arg);38. do_download(cmd.arg);

⑧

⑨ ⑩

⑪

T

F

T

F F T

T F

T F

Figure 2: Limitations of the linear search strategy.

The malware disguises itself as an upgrade package of the famous

ESET anti-virus software [28]. When executed, it replicates itself

to a designated roaming folder (lines 24-26). It then checks for the

existence of a special value (line 28) within a speci�ed key (line

27) in the registry, which indicates the presence of ESET on the

victim machine. If ESET is not installed, a Command object is initial-

ized (lines 29-30), recording the url of the malicious remote server

(MAL_URL). Otherwise, the url is assigned a regular value (REG_URL)

extracted from the registry key. The malware is equipped with a

VM detector (line 33). Only when it runs on a real machine, will it

establish a connection to the C&C server (line 34), receive command

messages (lines 35-36), and perform the corresponding actions (line

37-40). Otherwise, it opens the resource speci�ed by the url (line 43).

Note that our description is based on source code level for easier

comprehension, the analysis is actually operated at binary level.

Simply running the malware sample in a sandbox environment

cannot fully expose all of its malicious payloads, since they are

safeguarded by highly speci�c conditions. In our example, if ESET

is installed on the victim machine or the malware sample is exe-

cuted on a virtual machine, the malicious C&C behavior will not

be exposed at all. Manually con�guring the trigger conditions is

time-consuming and not practical for zero-day malware samples.

Forced execution provides a systematic solution to explore di�erent

program behaviors without environment setup. It works by force-

setting a small set of branch outcomes. In this example, if predicates

at lines 28, 33, 37 are all forced to take the true branch (while al-

lowing the other predicates to be evaluated as usual), the malicious

download behavior is revealed. However, the existing forced execu-

tion methods X-Force [40] and PMP [52] fail to �nd such a path as

they employ a simple linear path exploration algorithm.

2.1 Limitations of Linear Search

Linear search aims to cover all control �ow edges within several

rounds. In each round, a sequence of branches are enforced to

direct the control �ow from a speci�ed source block to a speci�ed

destination block, and the rest branches are evaluated as usual. Such

a sequence is called path scheme. After each round, a new branch is

selected for enforcement, usually by modifying the last branch in

the path trace to direct the control �ow from its source block to an

alternative destination block. Figure 2 shows partial control �ow

graph of the motivating example and all paths generated by linear

search. Assume the malware is executing in a virtual machine with

ESET installed. In the initial execution 4G42C8>=1, blocks 1© and 3©

take the true branch while blocks 4© and 6© take the false branch.

The path trace covers blocks 1©, 2©, 3©, 4©, 6©, 11©. The behaviors

related to registry, �le, and internet operations are disclosed. Since

block 6© is the source block of the last branch in the path trace and

its true branch remains uncovered, linear search appends the branch

from block 6© to block 7© (denoted as ⟨ 6© : 7©⟩) to the path scheme.

In the second execution 4G42C8>=2, the path scheme is enforced,

resulting in a path trace that covers 1©, 2©, 3©, 4©, 6©, 7©, 8©, 9©.

At this time, the branch ⟨ 8© : 10©⟩ is appended to the path scheme

for further enforcement. Following the similar manner, after linear

search terminates, all control �ow edges are covered.

Unnecessary path exploration. Among the six executions, the

last two (4G42DC8>=5 and 4G42DC8>=6) are unnecessary. In particu-

lar, 4G42DC8>=6 does not reveal any new behaviors, whether they

are di�erent syscalls or the same syscall with di�erent parameter

values compared to previous executions. The behaviors occur in

4G42DC8>=6 are covered in 4G42DC8>=1. Although 4G42DC8>=5 reveals

the syscall InternetOpenUrlwith a previously undisclosed param-

eter value (sourced from cmd.url), the value is invalid as it lacks

proper initialization. Indeed, both 4G4D2C8>=5 and 4G42DC8>=6 do

not reveal any new de�ne-use relations.

Incomplete behavior exposure. The linear search does not ex-

pose the behavior that triggers the InternetConnect syscall with

the value MAL_URL for its server_name parameter. Even though the
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Scheme → [] 끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뾞Trace      → [①,②,③,④,⑥,⑪]

Behavior → CopyFile(), RegOpenKey(), RegQueryValueEx(),

InternetOpenUrl(...,REG_URL,...)

Prediction → {}
Scheme → [<⑥:⑦>] 끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뾠Trace      → [①,②,③,④,⑥,⑦,⑧,⑨]

Behavior → InternetReadFile(),RegQueryValueEx(),

RegOpenKeyEx(), CopyFile(), InternetConnect(...,REG_URL,...)

Prediction→ {}

Scheme → [<④:⑤>] 끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뾢Trace      → [①,②,③,④,⑤,⑥,⑪]

Behavior → InternetReadFile(), RegQueryValueEx(), RegOpenKey(), CopyFile(), 

InternetOpenUrl(...,SERVER_URL,...)

Prediction→ {<L30,L34,&cmd.url>, <L29,L38,&cmd.arg>}

Scheme → [<④:⑤>, <⑥:⑦>] 끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뾤Trace      → [①,②,③,④,⑤,⑥,⑦,⑧,⑨]

Behavior → InternetReadFile(), RegQueryValueEx(), RegOpenKey(), CopyFile(), 

InternetConnect(...,SERVER_URL,...)

Prediction→{ <L30,L34,&cmd.url>, <L29,L38,&cmd.arg>}

Scheme → [<⑥:⑦>, <⑧:⑩>] 끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뾦Trace      → [①,②,③,④,⑥,⑦,⑧,⑩]

Behavior → InternetReadFile(), RegOpenKey(), RegQueryValueEx(), CopyFile(),

HttpOpenRequest(), InternetConnect(..., REG_URL,...)

Predict →{ <L29,L40,&cmd.arg>}

execution in exploration execution in direction 

accurate prediction inaccurate prediction excluded prediction

CurDef:{}
HisUse:{<L43,&cmd.url>}

CurDef:{}
HisUse:{<L37,&cmd.op>}

CurDef:{<L29,&cmd.op>, 
<L29,&cmd.arg>, <L30,&cmd.url>}

HisUse:{}

CurDef:{<L25,&cmd.url>}
HisUse:{}

CurDef:{<L24,&exe_path>}
HisUse:{<L25,&exe_path>}

CurDef:{}
HisUse:{<L26,&exe_path>}

CurDef:{}
HisUse:{}

CurDef:{<L35,&msg>, <L35,&cmd.op>,
<L35,&cmd.arg>}

HisUse:{<L34,&cmd.url>, <L36,&msg> }

CurDef:{}
HisUse:{} ⑥

⑦

③

①

②

⑤

④

CurDef:{}
HisUse:{<L38,&cmd.arg>}

CurDef:{}
HisUse:{<L38,&cmd.arg>}

⑧

⑨ ⑩

⑪

T

F

T

F
F T

T F

T F

Def and Use in 끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뤌끫뾢

Figure 3: Executions of DueForce on motivating example.

InternetConnect syscall was revealed in 4G42DC8>=3, its parame-

ter value is REG_URL. The behavior that connects to a malicious url

(rather than a regular one) is very important for malware analy-

sis. Paths that expose such behavior should contain the sub-trace

“ 4©→ 5©→ 6©→ 7©”. The linear search fails to generate such paths,

regardless of the branch it progressively selects to force in each

round. It is unavoidable for linear search that certain control �ow

edges within the critical sub-path have been covered in previous

rounds, thus hindering the traversal of the critical sub-path.

2.2 Observations

Linear search alters control �ow without considering data �ow,

potentially missing critical data-�ow (i.e., under-approximation) or

inducing infeasible data-�ow (i.e., over-approximation). Intuitively,

given a program with = statements, the number of control �ow

edges could be $ (=2), assuming each statement is capable of trans-

ferring control �ow to any other; the number of paths could be

$ (2=), assuming all branching statements have only two branches;

the number of de�ne-use relations could be $ (=2), assuming each

statement exhibits data dependence on any other. Hence, a de�ne-

use relation may be exposed by many paths, allowing the sampling

of paths to cover the majority. Linear search provides a way of path

sampling by progressively traversing control �ow edges. However,

covering all control �ow edges does not ensure the revelation of all

de�ne-use relations.

There are studies utilizing conservative analysis to detect data

dependence. For example, BDA [54] proposes unbiased whole-

program path sampling and per-path abstract interpretation for

dependence analysis. A natural idea is to use BDA to identify a set

of de�ne-use relations and force program paths to cover the identi-

�ed ones. Unfortunately, the conservative analysis result includes a

high number of false positives. When using it as guidance for path

exploration, signi�cant time is wasted attempting to cover false

dependence. The experiments (Section 4) demonstrate that such an

approach performs even worse than linear search. This inspires us

to consider a solution that dynamically detects de�ne-use relations

and concurrently employs them as guidance for path exploration.

2.3 Our Technique

We develop a fuzzing-based approach to perform path exploration,

called DueForce. Unlike traditional fuzzers, DueForce fuzzes the

subject binary (instead of input) by changing the forced branches

in the executor. There are two modes: the exploration mode that

employs control �ow coverage guided strategy and the direction

mode that employs de�ne-use directed strategy. The two modes

are switched under certain plan. After each iteration, DueForce

predicts new de�ne-use relations and corrects previous predictions.

Figure 3 illustrates how DueForce works on the motivating

example. The executions enclosed in a white and grey background

indicate they are in the exploration mode and the direction mode,

respectively. The prediction items highlighted with green, red and

yellow are accurate, inaccurate and excluded (for correction), re-

spectively. The �rst two executions (4G42DC8>=1 and 4G42DC8>=2) of

DueForce are the same with those of linear search. In 4G42DC8>=3,

DueForce (whose exploration mode focuses on block coverage)

and linear search (that focuses on edge coverage) select di�erent

branches to force. The executions yield two predicted de�ne-use

relations, resulting in mode switching from exploration to direction.

One of the predicted item speci�es the de�ne-use relation between

the statement at line 30 (block 5©) and that at line 34 (block 7©)

on the cmd.url variable. The two blocks appear in the crucial sub-

trace that triggers the malicious behavior. The search is guided

toward the paths that are anticipated to cover the predicted items.
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behaivors

Explorer Director
predicted

def-use relations

Predictor
switch

Forced Executor
binary

icfg

INPUT

OUTPUT

execution record

pool of  execution records

path scheme

Figure 4: Architecture of DueForce.

In 4G42DC8>=4, the behavior that connects to a malicious url is ex-

posed. Section 3 details how exploration, direction, and prediction

work. As we can see, none of the �ve executions of DueForce

are unnecessary; the program behaviors exposed by DueForce are

more complete than linear search. Our experiment result shows

that DueForce has 180.91% higher rate of useful executions and

exposes 41.71% more behaviors than linear search on this example.

3 DESIGN

DueForce performs path exploration guided by de�ne-use relations

in a progressive and self-supervised way. The architecture is shown

in Figure 4. It takes as input a subject binary and its inter-procedural

control-�ow graph (ICFG), and outputs the program behaviors.

It consists of four components: explorer, director, predictor, and

forced executor. The explorer and director use di�erent strategies

to generate path schemes. In particular, the explorer endeavors to

discover new de�ne-use relations by traversing unexplored ICFG

blocks, while the director prioritizes covering the predicted de�ne-

use relations. The two entail di�erent challenges because executions

covering the same ICFG blocks may exercise di�erent sets of de�ne-

use relations, depending on variable values. The forced executor

runs the subject binary, forcefully setting the respective branch

outcomes to enable traversal of the ICFG edges speci�ed in the

generated path schemes. The execution records are pooled, so that

the predictor can use them to predict new de�ne-use relations for

further guidance.

DueForce’s overall architecture resembles a fuzzer’s. The dif-

ference is that the subject binary (instead of input) is fuzzed by

changing the forced branches in the executor. The work�ow in

shown in Algorithm 1. In each iteration, the selection between ex-

ploration and directionmodes relies on the mode switching strategy

(line 4). We provide two strategies: default and lazy. The default

strategy switches between the two modes based on the quantity of

unrevealed predicted de�ne-use relations. The lazy strategy shifts

to direction mode only when the exploration mode exhausts its

ability to cover new ICFG blocks. Both modes will generate a path

scheme that speci�es the branches requiring forced setting. Af-

ter forced execution (line 8), the current and historical execution

records are used to predict de�ne-use relations to be uncovered

(line 9). If any new de�ne-use relation is revealed, the execution

record will be pooled for selection in subsequent iterations (lines

10-11). The fuzzing process terminates upon reaching any resource

Block F [InsnAddr]

Edge F Block × Block

ICFG F Block × Edge

PathScheme F [Edge]

PathTrace F [Block]

ExecRecord F PathScheme × PathTrace × Behaivors

Def | Use F InsnAddr × MemAddr

DefUse F InsnAddr × InsnAddr × MemAddr

Insn2Block F InsnAddr → Block

GetSuccessorSet | GetDescendantSet F ICFG × Block → {Block}

GetTracePrefix | GetTraceSuffix F PathTrace × Block → PathTrace

GetLastForcedBlock F PathScheme → Block

GetDefSetInTraceBlock F PathTrace × Block → {Def}

GetUseSetInTraceBlock F PathTrace × Block → {Use}

GetDefUseSetInTrace F PathTrace → {DefUse}

GetDefSetInRecordsBlock F {ExecRecord} × Block → {Def}

GetUseSetInRecordsBlock F {ExecRecord} × Block → {Use}

GetDefUseSetInRecords F {ExecRecord} → {DefUse}

GetBlockSetInRecords F {ExecRecord} → {Block}

EstimateDefUseSet F {Def} × {Use} → {DefUse}

Figure 5: De�nitions.

limit, such as time or memory constraints (lines 12-13). Program

behaviors are �nally extracted from execution records (line 14).

3.1 De�nitions

To facilitate discussion, we introduce the following de�nitions as

shown in Figure 5. An inter-procedural control �ow graph ICFG

consists of blocks (denoted as Block) that are connected by edges

(denoted as Edge). An ICFG block represents a contiguous sequence

of instructions executed without any branching or interruption.

An ICFG edge represents the control �ow from one ICFG block

to another. A path scheme PathScheme is de�ned as a selected set

of ICFG edges that require forcefully traversing, and a path trace

PathTrace is de�ned as a sequence of ICFG blocks ordered accord-

ing to their occurrences during program execution. An execution

record ExecRecord documents the path scheme used in a forced

execution, the resulting path trace, and the program behaviors. The

de�ne (denoted as Def) and use (denoted as Use) operations are

represented by the instruction address and the memory address

that the instruction writes to or reads from. If an instruction 8=B=1
writes to a memory address<4<, which is subsequently read by

another instruction 8=B=2, then 8B=B1 and 8=B=2 have a de�ne-use

relation (denoted as DefUse) at memory<4<.

We de�ne some utility functions for brief description. Insn2Block

maps an instruction to its containing ICFG block. GetSuccessorSet

and GetDescendantSet respectively obtain the successors and de-

scendants of a given ICFG block. GetTracePrefix and GetTrace-

Suffix respectively extract the sub-trace that concludes and com-

mences with a given ICFG block from a path trace. GetLastForced-

Block locates the ICFG block whose branch outcome requires force-

fully set to enable traversal of the last ICFG edge speci�ed in a given

path scheme. GetDefSetInTraceBlock, GetUseSetInTraceBlock,

GetDefUseSetInTrace respectively retrieve the de�ne and use op-

erations and the de�ne-use relations that have taken place within (a

given ICFG block of) a provided path trace. Likewise, GetDefSetIn-

RecordsBlock, GetUseSetInRecordsBlock, GetDefUseSetInRe-

cords retrieve the de�ne and use information from the historical ex-

ecution records. GetBlockSetInRecords returns the ICFG blocks

that have already been covered in previous executions. EstimateDef-

UseSet estimates de�ne-use relations for the given sets of de�ne

and use operations.

291



ISSTA ’24, September 16–20, 2024, Vienna, Austria He, et al.

Algorithm 1: Overall work�ow.

Input : binary ⊲ subject binary
icfg ⊲ ICFG of the subject binary

Output : behaviors ⊲ program behaviors
Global : records ⊲ execution records

predicted_dus ⊲ predicted de�ne-use relations
pm ⊲ prediction metric
ps ⊲ program states

1 A42>A3B ← ∅, ?A4382C43_3DB ← ∅

2 ?< ← {}, ?B ← {}

3 while)AD4 do
4 if ">34(F82ℎ8=6(CA0C46~ (?A4382C43_3DB ) == �-%!$'� then
5 B2ℎ4<4_=4F ← 4G?;>A4 (82 5 6, A42>A3B )

6 else
7 B2ℎ4<4_=4F ← 38A42C (82 5 6, A42>A3B, ?A4382C43_3DB )

8 A42>A3 ← �>A24�G42DC4 (18=0A~, Bℎ4<4_=4F )

9 ⟨?A4382C43_3DB,?<,?B⟩ ← ?A4382C (8256,A42>A3B,A42>A3,?A4382C43_3DB,?<,?B)

10 if �0B#4F�45*B4 (A42>A3B, A42>A3 ) then
11 A42>A3B ← A42>A3B

⋃
A42>A3

12 if '402ℎ'4B>DA24!8<8C ( ) then
13 break

14 14ℎ0E8>AB ← �GCA02C�4ℎ0E8>AB�A><'42>A3B (A42>A3B )

3.2 Exploration

In the exploration mode, we employ control �ow coverage guided

fuzzing strategy. Intuitively, it tries to cover the ICFG blocks by

using as shortest path schemes as possible. Note that the fewer

branch outcomes that are set forcefully, the more closely the forced

execution resembles a normal execution. This allows us to avoid

bogus de�ne-use relations as much as possible.

Algorithm 2 describes how the exploration mode works. It �rst

extracts previously covered ICFG blocks from the historical execu-

tion records (line 2). It then searches for the force candidates for

each path scheme within the historical execution records, aiming to

identify those that will lead to the exploration of uncovered ICFG

blocks subsequent to the last forced ICFG block in the path scheme

(lines 4-11). It selects the shortest path scheme that has at least

one associated force candidate (lines 12-14). For the selected path

scheme, the mutation is performed by appending it with a randomly

selected force candidate (lines 15-17).

Example. Take the executions of the motivating example as an il-

lustration (Figure 3). The initial execution 4G42DC8>=1 uses an empty

path scheme, the resulting path trace covers the ICFG blocks num-

bered 1©, 2©, 3©, 4©, 6©, 11©. In 4G42DC8>=2, the empty path scheme is

selected for mutation, as it is the (sole) shortest one in the histori-

cal execution records. The force candidates include ⟨ 4© : 5©⟩ and

⟨ 6© : 7©⟩, since they will lead to the exploration of uncovered ICFG

blocks numbered 5© and 7©, respectively. The latter one is randomly

selected and appended to the empty path scheme, generating a

mutated path scheme [⟨ 6© : 7©⟩]. The force execution using the mu-

tated path scheme results in the path trace “ 1©→ 2©→ 3©→ 4©→ 6©→
7©→ 8©→ 9©”. This execution exposes new de�ne-use relations,

hence is stored in the execution record pool. Similarly, in 4G42DC8>=3
and 4G42DC8>=5, the shortest path scheme that has at least one as-

sociated force-setting candidate is selected for mutation; and the

executions are stored, as they expose new de�ne-use relations.

3.3 Direction

In the direction mode, we employ de�ne-use directed fuzzing strat-

egy. Intuitively, it guides the search towards the paths that are

Algorithm 2: Exploration.

Input : icfg: ICFG

records: {ExecRecord}

Output : scheme_new: PathScheme

1 B2ℎ4<4_B4;42C43 ← ∅, 5 >A24_20=3830C4B ← ∅

2 2>E_1;>2:B ← �4C�;>2:(4C�='42>A3B (A42>A3B )

3 for ⟨B2ℎ4<4, CA024, −⟩ in A42>A3B do
4 C<?_20=3830C4B ← ∅

5 ;0BC_5 >A243_1;>2: ← �4C!0BC�>A243�;>2: (B2ℎ4<4 )

6 CA024_BD5 5 8G ← �4C)A024(D5 5 8G (CA024, ;0BC_5 >A243_1;>2: )

7 for BD5 5 8G in CA024_BD5 5 8G do
8 BD224BB>AB ← �4C(D224BB>A(4C (82 5 6, BD5 5 8G )

9 for BD22 in BD224BB>AB do
10 if BD22 ∉ 2>E_1;>2:B then
11 C<?_20=3830C4B ← C<?_20=3830C4B

⋃
⟨BD5 5 8G, BD22 ⟩

12 if C<?_20=3830C4B ≠ ∅ and !4= (B2ℎ4<4 ) ≤ !4= (B2ℎ4<4_B4;42C43 ) then
13 B2ℎ4<4_B4;42C43 ← B2ℎ4<4

14 5 >A24_20=3830C4B ← C<?_20=3830C4B

15 if B2ℎ4<4_B4;42C43 ≠ ∅ then
16 5 >A24_B4;42C43 ← '0=3>< (5 >A24_20=3830C4B )

17 B2ℎ4<4_=4F ← �??4=3 (B2ℎ4<4_B4;42C43, 5 >A24_B4;42C43 )

18 return B2ℎ4<4_=4F

anticipated to expose more previously uncovered de�ne-use rela-

tions. Given a path scheme randomly selected from the historical

execution records, we will weight all the force candidates based on

their potential in revealing predicted de�ne-use relations.

Algorithm 3 describes how the direction mode works. It ran-

domly selects a historical execution record (line 2), locates the last

forced block in the path scheme (line 3), and extracts the sub-trace

that commences with the located block from the path trace (line 4).

For each block in the sub-trace, we retrieve the de�ne operations

occurred prior to the block in the path trace (lines 6-10) and ex-

amine each of its succeeding blocks (lines 11-21). The examination

retrieves the use operations occurred in the descendants of the suc-

ceeding block within the historical execution records (lines 15-19),

estimates the expected de�ne-use relations that might emerge if

the succeeding block is forcefully traversed (line 20), and assigns a

weight to the force candidate based on the size of the intersection

of the expected de�ne-use relations and the predicted ones (line 21).

Finally, we sample a force candidate based on the assigned weights

(line 22) to generate a new path scheme (line 23). The higher the

weight, the more likely a force candidate is to be sampled.

Example. Refer to the left part of Figure 3 for the executions of

the motivating example. After three executions, the number of

predicted items exceeds the threshold (2 in this simpli�ed exam-

ple), DueForce switches to the direction mode. Assume 4G42DC8>=3
is randomly selected for consideration, the path trace is “ 1© →
2©→ 3©→ 4©→ 5©→ 6©→11©”. The force candidates include ⟨ 1© : 3©⟩,

⟨ 3© : 6©⟩, ⟨ 4© : 6©⟩, and ⟨ 6© : 7©⟩. Take ⟨ 6© : 7©⟩ as an example. Re-

fer to the right part of Figure 3, the de�ne operations occurred prior

block 6© in the path trace include ⟨!24, &exe_path⟩, ⟨!29, &cmd.op⟩,

⟨!29, &cmd.arg⟩, and ⟨!30, &cmd.url⟩; the use operations occurred

in the descendants of block 7© within the historical execution

records include ⟨!34, &cmd.url⟩, ⟨!36, &msg⟩, and ⟨!38, &cmd.arg⟩.

The expected de�ne-use relations if ⟨ 6© : 7©⟩ is forcefully taken

are {⟨!30, !34, &cmd.url⟩, ⟨!29, !38, &cmd.arg⟩} (by merging the

de�nes and uses that operate on the same memory address). The

expected de�ne-use relations match the predicted ones; hence the
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Algorithm 3: Direction.

Input : icfg: ICFG

records: {ExecRecord}

predicted_dus: {DefUse}

Output : scheme_new: PathScheme

1 5 >A24_20=3830C4B ← ∅, F486ℎCB ← {}

2 ⟨B2ℎ4<4_B4;42C43, CA024_B4;42C43, −⟩ ← '0=3>< (A42>A3B )

3 ;0BC_5 >A243_1;>2: ← �4C!0BC�>A243�;>2: (B2ℎ4<4_B4;42C43 )

4 CA024_BD5 5 8G ← �4C)A024(D5 5 8G (CA024_B4;42C43, ;0BC_5 >A243_1;>2: )

5 for BD5 5 8G in CA024_BD5 5 8G do
6 345 B ← ∅

7 CA024_?A4 5 8G ← �4C)A024%A4 5 8G (CA024_B4;42C43, BD5 5 8G )

8 for ?A4 5 8G in CA024_?A4 5 8G do
9 C<?_345 B ← �4C�45 (4C�=)A024 (CA024, ?A4 5 8G )

10 345 B ← 345 B
⋃
C<?_345 B

11 BD224BB>AB ← �4C(D224BB>A(4C (82 5 6, BD5 5 8G )

12 for BD22 in BD224BB>AB do
13 5 >A24 ← ⟨BD5 5 8G, BD22 ⟩

14 5 >A24_20=3830C4B ← 5 >A24_20=3830C4B
⋃

5 >A24

15 DB4B ← ∅

16 34B24=30=CB ← �4C�4B24=30=C(4C (82 5 6, BD22 )

17 for 34B2 in 34B24=30=CB do
18 C<?_DB4B ← �4C*B4(4C�='42>A3B�;>2: (A42>A3B,34B2 )

19 DB4B ← DB4B
⋃
C<?_DB4B

20 4G?42C43_3DB ← �BC8<0C4�45*B4(4C (345 B,DB4B )

21 F486ℎCB [ 5 >A24 ] ← (8I4 (4G?42C43_3DB
⋂
?A4382C43_3DB )

22 5 >A24_B4;42C43 ←,486ℎC43'0=3>< (5 >A24_20=3830C4B, F486ℎCB )

23 B2ℎ4<4_=4F ← �??4=3 (B2ℎ4<4_B4;42C43, 5 >A24_B4;42C43 )

24 return B2ℎ4<4_=4F

weight of ⟨ 6© : 7©⟩ is designated as 2, re�ecting the size of the in-

tersection. The weights of other force candidates are calculated

using the same method. Out of all the force candidates, ⟨ 6© : 7©⟩

is the most probable choice for generating new path scheme, as it

possesses the highest weight.

3.4 Prediction

The objective of predication is to generate new de�ne-use relations

(providing as guidance for path exploration) based on previously

disclosed de�ne-use relations. Intuitively, the de�ne and use op-

erations occurred in the paths collected from individual historical

execution records are propagated through all paths to predict new

de�ne-use relations. Speci�cally, it computes program states that

represent the set of live memory addresses at each ICFG block and

their de�nition instructions. An intuitive correspondence at the

source level is the set of live variables at a program point and the

statements that de�ne them.

De�ne-use relations are predicted between a read (use) instruc-

tion and all the de�nitions (write instructions) to the memory ad-

dress being read. The feedback from each execution instance is

gathered to assess the e�cacy of the prediction. The memory ad-

dresses corresponding to accurately predicted de�ne-use relations

will be rewarded, whereas those corresponding to inaccurate ones

will face penalties. The higher the association of a memory address

with accurate predictions, the greater its likelihood of being used

in future prediction. This allows generating de�ne-use relations

in a progressive and self-supervised way. Compared to utilizing

the results of conservative dependence analysis, on-the-�y predic-

tion with correction provides more e�ective guidance, resulting in

superior performance.

Algorithm 4 presents the details of prediction. It takes as in-

put the inter-procedural control �ow graph (82 5 6), the current and

historical execution records (A42>A3 and A42>A3B), the predicted

Algorithm 4: Prediction.

Input : icfg: ICFG

records: {ExecRecord}

record: ExecRecord

predicted_dus: {DefUse}

pm: MemAddr → ⟨Int,Int,Int⟩
ps: Block → (MemAddr → {Block})

Output : predicted_dus’: {DefUse}

pm’: MemAddr → ⟨Int,Int,Int⟩
ps’: Block → (MemAddr → {Block})

1 ?A4382C43_3DB′ ← ?A4382C43_3DB, ?<′ ← ?<, ?B′ ← ?B

2 ⟨B2ℎ4<4, CA024, −⟩ ← A42>A3

3 2DA_3DB ← �4C�45*B4(4C�=)A024 (CA024 )

4 for ⟨8=B=_345 , 8=B=_DB4,<4<⟩ in ?A4382C43_3DB′ do
5 1;>2:_345 ← �=B=2�;>2: (8=B=_345 )

6 1;>2:_DB4 ← �=B=2�;>2: (8=B=_DB4 )

7 ⟨022DA0C4_2=C, 8=022DA0C4_2=C, C>C0;_2=C ⟩ ← ?<′ [<4<]

8 if ⟨8=B=_345 , 8=B=_DB4,<4<⟩ ∈ 2DA_3DB then
9 022DA0C4_2=C ← 022DA0C4_2=C + 1

10 ?A4382C43_3DB′ ← ?A4382C43_3DB′ \ {⟨8=B=_345 , 8=B=_DB4,<4<⟩}

11 else if 1;>2:_345 ∈ CA024 and 1;>2:_DB4 ∈ CA024 then
12 8=022DA0C4_2=C ← 8=022DA0C4_2=C + 1

13 ?A4382C43_3DB′ ← ?A4382C43_3DB′ \ {⟨8=B=_345 , 8=B=_DB4,<4<⟩}

14 C>C0;_2=C ← C>C0;_2=C + 1

15 ?<′ [<4<] ← ⟨022DA0C4_2=C, 8=022DA0C4_2=C, C>C0;_2=C ⟩

16 for 1;>2: in CA024 do
17 ℎ8B_345 B ← �4C�45 (4C�='42>A3B�;>2: (A42>A3B,1;>2: )

18 2DA_345 B ← �4C�45 (4C�=)A024�;>2: (CA024,1;>2: )

19 =4F_345 B ← 2DA_345 B \ ℎ8B_345 B

20 if =4F_345 B ≠ ∅ then
21 <4<_033AB ← ∅

22 for ⟨8=B=,<4<⟩ in =4F_345 B do
23 <4<_033AB ←<4<_033AB

⋃
<4<

24 <4<_033AB ←,486ℎC43(0<?;4 (<4<_033AB, ?<′ )

25 34B24=30=CB ← �4C�4B24=30=C(4C (82 5 6,1;>2: )

26 for 34B2 in 34B24=30=CB do
27 for<4< in<4<_033AB do
28 ?B′ [34B2 ] [<4<] ← ?B′ [34B2 ] [<4<]

⋃
1;>2:

29 ℎ8B_DB4B ← �4C*B4(4C�='42>A3B�;>2: (A42>A3B,1;>2: )

30 2DA_DB4B ← �4C*B4(4C�=)A024�;>2: (CA024,1;>2: )

31 0;;_DB4B ← 2DA_DB4B
⋃
ℎ8B_DB4B

32 for ⟨8=B=,<4<⟩ in 0;;_DB4B do
33 for 1;>2:_345 in ?B′ [1;>2: ] [<4<] do
34 ?A4382C43_3DB′ ← ?A4382C43_3DB′

⋃
⟨1;>2:_345 ,1;>2: ⟩

35 return ⟨?A4382C43_3DB′, ?B′, ?<′ ⟩

de�ne-use relations (?A4382C43_3DB), the metric of the prediction

(?<), and the program states (?B). After processing, it updates the

predicted de�ne-use relations (?A4382C43_3DB′), the metric of pre-

diction (?<′), and the program states (?B′). The process consists of

two stages. In the �rst stage (lines 4-15), each predicted de�ne-use

relation is assessed based on the feedback of current execution

record. Speci�cally, a predicted item will be considered as accurate,

if it appears within the de�ne-use relations extracted from the cur-

rent execution trace (lines 8-10); otherwise, if a predicted item does

not appear but its de�ne and use ICFG blocks are present within the

current execution trace, it will be considered as inaccurate (lines

11-13). The accurate and inaccurate predicted items are removed

from the predicted results (lines 10 and 13). The assessment is used

to update the metric of prediction (line 15). In the second stage

(lines 16-34), the ICFG is traversed to compute program states of

each block for incremental prediction. Speci�cally, newly occurred

de�ne operations (=4F_34 5 B) are extracted from the current exe-

cution trace (lines 17-19) and then propagated to the descendants

of the block where the de�ne operations occur (lines 20-28). For

each ICFG block in the current execution trace, all use operations

occurred in the block (0;;_DB4B) are extracted from both the current
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and historical execution records (lines 29-31). De�ne-use operations

are predicted by �nding memory addresses that are written by any

item in =4F_34 5 B and read by any item in 0;;_DB4B (lines 32-34).

The rewards or penalties assigned to a memory address in�uence

its likelihood of being sampled for prediction (line 24).

Example. Recall the executions of the motivating example. As

shown in the right part of Figure 3, after 4G42DC8>=3, the newly

occurred de�ne operations in block 5© include ⟨!30, &cmd.url⟩,

⟨!29, &cmd.arg⟩, and ⟨!29, &cmd.op⟩; and all use operations oc-

curred in block 7© and block 9© include ⟨!34, &cmd.url⟩,⟨!36, &msg⟩

and ⟨!38, &cmd.arg⟩, respectively. By merging the new de�nes in

block 5© with all uses in block 7© and block 9©, we predict two

de�ne-use relations: ⟨!30, !34, &cmd.url⟩ and ⟨!29, !38, &cmd.arg⟩,

respectively. Then in 4G42DC8>=4, ⟨!30, !34, &cmd.url⟩ appears in

the de�ne-use relations extracted from the execution, hence is

treated as accurate; ⟨!29, !38, &cmd.arg⟩ does not appear but its

de�ne and use blocks (block 5© and block 9©) are present in the

execution trace, hence is treated as inaccurate. In 4G42DC8>=5, the

new prediction ⟨!29, !40, &cmd.arg⟩ is most likely to be excluded

as a penalty on cmd.arg.

3.5 Implementation

Forced Executor. The forced executor of DueForce is a reimple-

mentation of PMP’s [52] in C/C++. PMP originally builds its forced

executor is built on top of QEMU user-mode emulator [12]. Unlike

system-wide emulation, QEMU currently only supports user space

emulation on Linux. For analyzing malware samples on both Linux

and Windows, we re-implement the forced executor implemented

on top of Pin [11], a well-known dynamic binary instrumentation

tool, in order to handle both Linux and Windows malware samples.

Note that previous forced executors such as PMP [52] were imple-

mented in QEMU [12] and could not handle Windows malware.

Loop and Recursion. As forced execution may lead to in�nite

loop and in�nite recursion, it’s necessary to handle these issues

to enable the execution to continue. Both PMP and X-Force reset

the loop bound and callstack depth to a pre-de�ned constant. To

handle in�nite recursion, DueForce employs the same technique

as PMP. To handle in�nite loop, DueForce set loop bound similarly.

However, due to the limitation of linear search, loop analysis occurs

only once, and forcing the program to enter the loop every time con-

sumes excessive time. To this end, DueForce determines whether

to enter into the loop on demand. When predicted de�ne-use rela-

tionships exist within the loop, DueForce enforces the control �ow

into the loop even if the loop body have been covered previously.

4 EVALUATION

We evaluate DueForce on the SPEC2000 benchmark suite [17]

and a set of recent malware samples collected from VirusShare [7].

The experiments on SPEC2000 are conducted on a desktop com-

puter equipped with 8-core CPU (Intel i7-6700 @ 4.00GHz) and

32GB memory. The experiments on the malware samples are con-

ducted on a virtual machine (for sand-boxing their malicious be-

haviours) hosted on the same desktop. We compare DueForcewith

PMP [52] and the approach that uses the dependence analysis re-

sults of BDA [54] to guide path exploration (referred to as BDA∗ in

the following description), as mentioned in Section 2.2. Note that

PMP has a �nite number of executions (approximately equivalent

to the number of control �ow edges), whereas DueForce and BDA∗

run in a in�nite loop. For a fair comparison, we enhance PMP to

incorporate random path exploration following the completion of

its linear search. This enables us to compare the three tools in the

same time duration.

4.1 SPEC2000 Analysis

SPEC2000 is a benchmark suite designed to evaluate the perfor-

mance of computer processors. It contains a series of real world

programs of various scale (ranging from 6K to 4M) that cover a wide

spectrum of computing tasks. We evaluate the execution outcomes

and the memory dependence (i.e., de�ne-use relations). For each

program, we �rst record the number of rounds in which PMP com-

pletes its linear search; then we run DueForce for the equivalent

number of rounds and record the time consumption; and �nally we

keep running PMP and BDA∗ for the same time duration. We also

conduct an ablation study that con�gures DueForce with di�erent

settings, including the exploration mode alone, the combination

of exploration and direction without self-supervision, and all com-

ponents enabled but utilizing lazy mode switching. Besides, the

results are averaged over �ve trials.

For execution outcomes, we measure the rate of useful execu-

tions. An execution is considered useful if it reveals previously

uncovered de�ne-use relations. For memory dependence, it is in-

tractable to acquire the ground truth, even with source code (due

to various reasons such as aliasing and loops). We use two meth-

ods (as done in PMP and BDA) to evaluate the quality of detected

dependencies. First, we run the programs with the inputs provided

by SPEC2000 and use the observed dependencies as reference. Any

dependence that appears in the reference but not in the detected

results is a missing one (or a false negative). Second, we use a static

type checker to verify the detected dependencies. Any detected

dependence whose source and destination have di�erent types is

considered a mistyped one (which must be a false positive).

Overall results. Table 1 presents the overall results. Column 1 is

the program name. Column 2 reports the execution time. Column

3 denotes the number of dependencies observed in the reference

execution. Columns 4-7, 8-11 and 12-15 are the results of Due-

Force, PMP and BDA∗, respectively. The columns labeled with “#

Found”, “# Correct” and “# Mistyped” report the numbers of de-

tected, correctly detected and mistyped dependencies, respectively.

The columns labeled with “# Execution” report the numbers of

useful and total executions. We have the following observations. (1)

DueForce exhibits the highest rate of useful executions, surpassing

PMP and BDA∗ by an average of 44.16% and 331.02%, respectively.

(2) The average rate of correctly detected memory dependence

(recall) reported by DueForce is 25.78% and 305.89% higher than

those of PMP and BDA∗, respectively. (3) DueForce exhibits a

comparable average rate of mistyped memory dependence (false

positives) to those of PMP and BDA∗. The experiment results align

with the expectation. PMP exhibits lower rate of useful executions

compared to DueForce, hence it misses more memory dependence

than DueForce. BDA∗ utilizes the conservative memory depen-

dence result as guidance for path exploration; signi�cant time is

wasted attempting to cover false de�ne-use relations.
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Table 1: Overall results on the SPEC2000 benchmark suite.

Program Time (s) # Refer
DueForce PMP BDA∗

# Found # Correct # Mistyped # Execution # Found # Correct # Mistyped # Execution # Found # Correct # Mistyped # Execution

164.gzip 192 3,648 3,691
2,754

(75.49%)
13

(0.35%)
259/361
(71.88%)

3,648
2,525

(69.22%)
1

(0.03%)
281/708
(39.69%)

1,689
1,509

(41.37%)
1

(0.06%)
34/321
(10.60%)

175.vpr 741 13,962 13,833
9,567

(68.52%)
260

(1.88%)
790/861
(91.85%)

11,151
7,646

(54.88%)
140

(1.26%)
729/1,089
(66.94%)

1,782
1,049
(7.51%)

9
(0.51%)

138/861
(16.03%)

176.gcc 7,660 324,884 66,270
37,222
(11.00%)

2,715
(4.10%)

7,454/8,000
(93.17%)

46,630
21,804
(6.71%)

1,959
(4.20%)

6,279/1,1171
(56.21%)

10,772
6,975
(2.15%)

317
(2.94%)

675/8,000
(8.44%)

181.mcf 27 2,053 2,097
1,539

(74.96%)
34

(1.68%)
95/111
(85.82%)

1,629
1,237

(60.25%)
92

(5.65%)
72/108
(66.67%)

686
559

(27.23%)
17

(2.48%)
34/121
(28.10%)

186.crafty 4,607 31,631 25,726
16,922
(53.50%)

144
(0.56%)

1,927/2,431
(79.29%)

21,238
14,227
(44.98%)

100
(0.47%)

1,771/4,183
(42.34%)

7,231
4,635

(17.78%)
21

(0.29%)
175/1,671
(10.47%)

197.parser 519 16,575 10,697
8,031

(48.45%)
276

(2.58%)
1,384/1,541
(88.66%)

9,975
6,856

(41.36%)
890

(8.92%)
1,300/2,060
(63.11%)

1,206
894

(5.39%)
14

(1.16%)
91/1,541
(5.91%)

252.eon 470 8,958 9,200
4,222

(47.13%)
83

(0.90%)
442/491
(90.06%)

9,203
4,164

(46.48%)
102

(1.11%)
429/585
(73.33%)

1,132
1,057

(11.80%)
0

(0.00%)
25/481
(5.20%)

253.perlbmk 5,468 61,939 34,575
16,945
(27.36%)

932
(2.69%)

3,305/3,581
(92.31%)

35,021
16,882
(27.26%)

876
(2.50%)

4,113/5,913
(69.56%)

5,276
3,926
(6.34%)

405
(7.68%)

226/3,581
(6.31%)

254.gap 2,008 42,276 7,899
3,635
(8.60%)

225
(2.82%)

761/901
(84.50%)

7,728
2,843
(6.72%)

69
(0.76%)

901/1,559
(57.79%)

1,994
1,190
(2.81%)

58
(2.91%)

105/901
(11.65%)

255.vortex 5,908 42,523 54,828
20,924
(49.21%)

926
(1.69%)

5,368/5,791
(92.71%)

44,804
17,672
(41.56%)

610
(1.36%)

4,544/7,673
(58.44%)

11,861
5,532

(13.01%)
160

(1.35%)
746/5,801
(12.86%)

256.bzip2 522 4,306 3,739
3,155

(73.27%)
17

(0.45%)
163/241
(67.97%)

3,265
2,797

(64.96%)
9

(0.28%)
188/402
(46.77%)

1,587
1,399

(32.49%)
2

(0.13%)
42/261
(16.10%)

300.twolf 1,500 17,876 26,721
11,880
(66.46%)

783
(2.92%)

2,381/2,841
(83.81%)

23,424
10,086
(56.42%)

554
(2.37%)

2,138/3,139
(68.11%)

6,685
4,974

(27.83%)
54

(0.81%)
331/2,901
(11.41%)

Avg. - - - 11,398.50 534.92 85.17% - 9,062 450.17 59.08% - 2,808.25 88.17 19.76%

Table 2: Ablation study on the SPEC2000 benchmark suite.

Program Time (s) # Refer
Exploration Only Exploration + Direction (w/o Self-Supervision) DueForce (lazy mode switching)

# Found # Correct # Mistyped # Execution # Found # Correct # Mistyped # Execution # Found # Correct # Mistyped # Execution

164.gzip 192 3,648 3,172
2,385

(65.38%)
2

(0.06%)
215/361
(59.57%)

3,148
2,364

(64.80%)
2

(0.06%)
207/361
(57.34%)

3,678
2,774

(76.04%)
21

(0.57%)
271/361
(75.07%)

175.vpr 741 13,962 12,734
8,794

(62.99%)
188

(1.48%)
767/861
(89.08%)

13,460
9,039

(65.16%)
237

(1.76%)
779/861
(90.48%)

13,443
9,267

(66.37%)
270

(1.65%)
776/861
(90.13%)

176.gcc 7,660 324,884 41,778
19,593
(6.03%)

1,652
(3.95%)

5,017/8,001
(62.70%)

40,260
18,560
(5.71%)

1,732
(4.30%)

4,882/8,001
(61.02%)

48,208
21,681
(6.67%)

2,019
(4.19%)

5,743/8,001
(71.78%)

181.mcf 27 2,053 1,918
1,441

(70.19%)
54

(2.87%)
83/111
(74.77%)

1,936
1,473

(71.75%)
68

(3.51%)
87/111
(78.38%)

2,016
1,563

(76.13%)
60

(2.98%)
96/111
(86.49%)

186.crafty 4,607 31,631 21,583
15,077
(47.67%)

89
(0.41%)

1,345/2,431
(55.33%)

21,213
14,790
(46.76%)

91
(0.43%)

1,310/2,431
(53.89%)

24,324
15,680
(49.57%)

95
(0.39%)

1,810/2,431
(74.45%)

197.parser 519 16,575 8,844
6,327

(38.17%)
613

(6.93%)
939/1,541
(60.35%)

9,695
6,619

(39.93%)
778

(8.02%)
1,107/1,541
(71.84%)

10,923
7,630

(46.03%)
990

(9.06%)
1,297/1,541
(84.17%)

252.eon 470 8,958 8,834
3,997

(44.62%)
87

(0.98%)
390/491
(79.43%)

9,069
4,226

(47.18%)
98

(1.08%)
391/491
(79.63%)

9,389
4,381

(48.91%)
81

(0.86%)
405/491
(82.48%)

253.perlbmk 5,468 61,939 21,644
10,695
(17.27%)

1,310
(6.05%)

1,819/3,581
(50.80%)

29,196
15,508
(25.04%)

787
(2.70%)

2,920/3,581
(81.54%)

31,900
15,963
(25.77%)

1,313
(4.12%)

3,369/3,581
(94.08%)

254.gap 2,008 42,476 7,736
2,749
(6.50%)

60
(0.78%)

712/901
(79.02%)

8,358
3,488
(8.25%)

138
(1.65%)

784/901
(87.01%)

8,237
3,712
(8.78%)

208
(2.51%)

825/901
(91.56%)

255.vortex 5,908 42,523 39,634
16,116
(37.90%)

502
(1.27%)

3,808/5,791
(65.76%)

42,991
17,653
(41.51%)

293
(1.18%)

4,181/5,791
(72.15%)

50,524
19,908
(46.82%)

800
(1.58%)

5,211/5,791
(89.98%)

256.bzip2 522 4,306 2,311
2,020

(46.91%)
2

(0.09%)
96/241
(39.83%)

2,936
2,576

(59.82%)
2

(0.07%)
127/241
(52.70%)

3,774
3,180

(73.85%)
21

(0.56%)
161/241
(66.80%)

300.twolf 1,500 17,876 23,345
10,036
(56.14%)

801
(3.43%)

1,958/2,841
(68.92%)

25,475
11,237
(62.86%)

1,177
(4.62%)

2,276/2,841
(80.11%)

25,276
11,691
(65.40%)

710
(2.81%)

2,394/2,841
(84.27%)

Avg. - - - 8,269.17 446.67 66.25% - 8,961.08 450.25 72.30% - 9,785.83 549 82.55%
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Figure 6: Overall results of malware analysis.
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1 typedef s t ruc t {

2 char ∗ s t r i n g ; / ∗ t h e word i t s e l f ∗ /

3 DictNode ∗ l e f t , ∗ r i g h t ;

4 } DictNode ;

5 void i n s e r t _word ( DictNode ∗ dn , in t l ) {

6 i f ( c on t a i n s _unde r b a r ( dn−> s t r i n g ) ) {

7 new = a l l o c_ i d i om_node_ f rom ( dn ) ;

8 dn−> l e f t = dn−> r i g h t = NULL ;

9 x f r e e ( dn , s i z eo f ( DictNode ) ) ; / / c r a s h h e r e

10 /* the code in this region will not be covered by linear search */

11 }

12 }

13 void read_word ( in t i ) {

14 DictNode ∗ dn = NULL ;

15 i f ( token [ 0 ] == ' / ' ) {

16 dn = x a l l o c ( s i z eo f ( DictNode ) ) ;

17 . . .

18 }

19 i n s e r t _word ( dn , i ) ;

20 }

Figure 7: SPEC2000 case study.

Ablation study. Table 2 presents the results of ablation study. In

this experiment, the execution time for each program remains con-

sistent with the aforementioned experiment. We have the following

observations. (1) The combination of exploration and direction in-

creases the rate of useful executions by 28.57% and increases the

rate of correctly detected memory dependence by 37.84%, com-

pared to utilizing the exploration mode alone. (2) Implementing

self-supervision, which leverages feedback from each execution

instance to rectify predictions, leads to a 17.80% increase in the rate

of useful executions and a 27.20% increase in the rate of correctly

detected memory dependence. (3) Lazy mode switching strategy,

which shifts to direction mode only when the exploration mode

exhausts its ability to cover new ICFG blocks, demonstrates perfor-

mance comparable to the default mode switching strategy.

Case study. We use 197.?0AB4A as a case study to demonstrate

the advantages of DueForce. It is a syntactic parser of English

base on a user-de�ned dictionary. Figure 7 shows the simpli�ed

code snippet related to the pre-processing of the dictionary. Specif-

ically, it reads words from a user-de�ned dictionary (lines 13-20)

and inserts them into an internal dictionary tree (lines 5-12). In a

plain execution, no user-de�ned dictionary is provided; both the

predicates at lines 15 and 6 take the false branch. Linear search

will iteratively force-set the outcomes of predicates 6 and 15 in two

di�erent executions. In the execution where predicate at line 6 is

forced to take the true branch, the program crashes at line 9 be-

cause dn is NULL, as the predicate at line 15 is not forced to take the

true branch. The code highlighted in red remains uncovered after

the linear search terminates. While in DueForce, the de�ne-use

relation ⟨!16, !7, &dn⟩ is predicted. Guided by such a de�ne-use

relation, the path that forcibly takes the true branch at lines 15 and

6 is explored. As a result, the code highlighted in red gets chance

to be executed, potentially exposing more de�ne-use relations.

4.2 Malware Analysis

We use 200 malware samples to evaluate DueForce’s capability in

exposing hidden malicious behaviors. These samples cover recent

malware of di�erent families. Half of them are on the Windows

platform, and the other half are on the Linux platform. We com-

pare DueForce’s analysis results with those of PMP and BDA∗ on

di�erent aspects, including the number of exposed behaviors, the

1 s t ruc t S o c k e t S t r u c t {

2 in t socke t , type , u s r I d , pwdId ;

3 char ∗ IP ;

4 } S ;

5 void main ( ) {

6 char ∗ usr , ∗pwd ;

7 in t MainCommSocket = connec t_by_ ip ( ATTACKER_IP ) ;

8 while ( 1 ) {

9 i f ( ! MainCommSocket ) break ;

10 switch ( S . type ) {

11 case 0 :

12 S . IP = g e t I n t r a n e t I P ( ) ;

13 us r = usrname [ S . u s r I d ] ;

14 pwd = passwd [ S . pwdId ] ;

15 S . s o c k e t = connec t_by_ ip ( S . IP ) ;

16 break ;

17 case 1 :

18 send ( S . socke t , usr , s t r l e n ( u s r ) ) ;

19 send ( S . socke t , pwd , s t r l e n ( pwd ) ) ;

20 i f ( r e a dUn t i l ( S . socke t , " c o r r e c t " ) ) S . type = 2 ;

21 e l se modify (&S . u s r I d , &S . pwdId ) ;

22 break ;

23 case 2 :

24 s p r i n t f ( msg , "REPORT %s :% s :% s " , S . IP , usr , pwd ) ;

25 send ( MainCommSocket , msg , s t r l e n ( msg ) ) ;

26 defaul t :

27 break ;

28 }

29 }

30 }
Figure 8: Malware case study.

rate of useful executions in revealing new de�ne-use relations and

exposing new behaviors. We re-implement PMP’s forced execu-

tor on top of Pin [11] to support cross-platform malware analysis.

We failed to port BDA to Windows, hence we only use BDA∗ for

analyzing the Linux malware samples.

Following the standard practices in malware analysis, we cap-

ture malware behaviors by monitoring system calls (on Linux) and

system library APIs (on Windows) invoked by the malware sample.

We refer to system calls and system library APIs as “syscalls” for

consistency. Intuitively, the greater the number of syscalls exposed

through forced execution, the more malware conditions are trig-

gered. The list of interesting syscalls is provided by Cuckoo [1],

a famous sandbox for malware analysis. We treat distinct invoca-

tions of the same syscall as separate behaviors, if their arguments

exhibit signi�cant di�erences. Speci�cally, we do not distinguish

between two distinct integer argument values. Regarding two string

arguments, we consider them as distinct if their similarity is below

80%. For structure arguments, we determine their dissimilarity by

examining discrepancies in their crucial �elds (e.g., the sin_addr

�eld for the sockaddr_in structure). When dealing with pointer

arguments, we examine their dereferenced values.

For each malware sample, we initiate a pristine virtual machine

snapshot to serve as analysis environment. To mitigate the side

e�ects across multiple executions of a malware sample, we perform

light-weight recovery of execution environment. Speci�cally, we

intercept the syscalls that may a�ect global objects, preserve the

current states of the target objects before invoking these syscalls,

and subsequently restore their states after an execution instance

of the malware sample. For example, we intercept the open system

call on Linux. If the �le is opened in the write mode, we copy the

�le to a temporary path and restore it post-execution. For fairness,

the environment initialization and recovery are equally enforced

for DueForce, PMP and BDA∗.
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Result summary. In our evaluation, DueForce exposes more

syscall sequences than PMP and BDA* in 93.5% and 99% of malware

samples, respectively. Figure 6 presents the overall results of mal-

ware analysis. The detailed results are shown in [10]. Speci�cally,

the number of unique syscall sequences exposed by di�erent tools

are shown in Figure 6a. On average, DueForce reports 35.02% and

197.64% more syscall sequences over PMP and BDA∗, respectively.

The rates of useful executions in revealing new de�ne-use relations

and exposing new behaviors are shown in Figure 6b and Figure 6c,

respectively. On average, DueForce outperforms PMP and BDA∗

by 169.82% and 443.24% on revealing new de�ne-use relations, and

by 167.50% and 174.76% on exposing new behaviors. The result

also shows that, the more previously uncovered de�ne-use rela-

tions are revealed, the more previously hidden syscall sequences

are triggered. It demonstrates that compared with branch coverage,

de�ne-use coverage is a better proxy for behavior coverage.

We also note that, we run DueForce for an equivalent number

of iterations as PMP completes its linear search. It is possible that

certain dependencies identi�ed by PMP or BDA* are located within

paths that have lower weights in terms of exposing more uncovered

de�ne-use relations, and thus have not been identi�ed by DueForce

within a limited number of iterations.

Case study. We use a trojan malware sample [48] as a case study.

Figure 8 simulates its behaviors. It connects to each computer within

the intranet (lines 12-15), brute-forces the username and password

combinations (lines 18-21), and sends the correct ones to the at-

tacker’s server (lines 24-25). The malicious behaviors need to be

executed sequentially, governed by a switch-case within a loop.

In a plain execution, the malware terminates rapidly due to the

unavailability of the attacker’s server. Linear search lacks adequate

guidance on generating a path scheme within a loop. It blindly tries

to traverse uncovered control �ow edges. When no uncovered edge

remains within a loop, it allows the loop to continue as usual until

the loop count reaches a prede�ned limit. As a comparison, Due-

Force predicts three de�ne-use relations from previous executions,

including ⟨!13, !18, &usr⟩, ⟨!14, !19, &pwd⟩, and ⟨!12, !24, &S.IP⟩.

The predictions guide the path exploration within the loop to se-

quentially traverse case 0, case 1, and case 2 in an execution. Con-

sequently, the malicious behaviors are exposed.

5 RELATED WORK

Data-�ow aware fuzzing. The conventional approach to fuzz

testing mostly relies on popular forms of edge coverage [27, 43,

53].Recent advancements have introduced a variety of feedback

mechanisms, with data-�ow relations emerging as a promising

candidate. Such as DDFuze [36] and DAFL [34], both utilizing data

dependency relations as feedbackmechanisms. Di�erent from using

data-�ow relations to guide the mutation of test cases, DueForce

instead employs data-�ow relations to mutate path schemes.

Forced execution. Forced execution techniques, achieved by force-

fully setting certain branch outcomes, can expose hidden software

behaviors and is widely used in the analysis of malware [40, 49,

52]. As discussed in the introduction section, considerable e�orts

have been dedicated to crash-free execution and for di�erent plat-

forms [13, 32, 33, 47, 50]. However, limited attention has been de-

voted to the critical aspect of path exploration. Existing approaches

predominantly rely on a linear search algorithm [40, 52], which may

traverse a substantial number of unnecessary paths, leaving some

paths unexplored that are pivotal for revealing malware behaviors.

Path exploration. The exploration of program execution paths

is typically conducted through many methods such as symbolic

execution and fuzzing tests. Symbolic execution involves the use

of symbolic variables to represent concrete input values, allowing

path exploration to cover multiple possible input scenarios while

maintaining abstraction [23, 29, 38, 44]. Fuzzing tests generate di-

verse test inputs to explore various execution paths of the target

program [43, 53]. Both of them involve generating inputs capable

of traversing a speci�c path. Whereas in forced execution, path

exploration [20, 22, 24, 35, 37, 40, 41, 45, 46, 51, 52] simply requires

forcibly setting the outcomes of certain branches without generat-

ing the corresponding inputs.

Memory dependence analysis. Since Debray et al. [26] and Ci-

fuentes et al. [25] pioneered the �eld of memory dependencies

analysis for executable �les by propagating abstract domains along

the registers of each instruction, numerous studies have emerged

to address this issue [15, 16, 18, 19, 21, 30, 31, 39, 42, 54]. VSA [18]

enhances the ideas of Debray et al. by tracking the value �ow

along registers and memory locations. DeepVSA [31] further im-

proves VSA by employing a neural network to predict the memory-

access regions of each instruction, and subsequently enhancing

VSA. BDA [54], to mitigate accuracy loss caused by path merging,

utilizes probabilistic analysis for uniformly sampling paths and

abstract interpretation. These studies employ conservative analysis

to detect memory dependence which leads to over-approximation.

DueForce dynamically predicts memory dependency and corrects

previous predictions.

6 CONCLUSION

We propose a novel and practical path exploration strategy (called

DueForce) for forced execution that features using de�ne-use re-

lations as guidance in a progressive and self-supervised fashion.

Compared to prioritizing the coverage of control �ow graph edge,

following the de�ne-use guidance enables precise path plans for

exploring new program behaviors. Consequently, DueForce e�ec-

tively reduces unnecessary path exploration, incomplete behav-

ior capture, and uninitialized pointer dereferences. We develop a

prototype system and apply it to the SPEC2000 benchmark and

200 real-world malware samples. The evaluation results show that

DueForce is substantially more e�ective and e�cient than state-

of-the-art forced execution tools.
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