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Abstract—Binding calls of embedded scripting engines introduce
a serious attack surface in PDF readers. To effectively test binding
calls, the knowledge of parameter types is necessary. Unfortunately,
due to the absence or incompleteness of documentation and the
lack of sufficient samples, automatic type reasoning for binding
call parameters is a big challenge. In this paper, we propose a
novel operand-variation-oriented differential analysis approach,
which automatically extracts features from execution traces as
oracles for inferring parameter types. In particular, the parameter
types of a binding call are inferred by executing the binding call
with different values of different types and investigating which
types cause an expected effect on the instruction operands. The
inferred type information is used to guide the test generation in
fuzzing. Through the evaluation on two popular PDF readers
(Adobe Reader and Foxit Reader), we demonstrated the accuracy
of our type reasoning method and the effectiveness of the inferred
type information for improving fuzzing in both code coverage and
vulnerability discovery. We found 38 previously unknown security
vulnerabilities, 26 of which were certified with CVE numbers.

Index Terms—binding call, PDF reader, type reasoning, fuzzing

I. INTRODUCTION

PDF (Portable Document Format) is the de-facto standard for

electronic document exchange [1]. It has become an appealing

target for the adversaries [2]. Many attacks have been found

that exploit vulnerabilities hidden in different components of

famous PDF readers [3]. Finding vulnerabilities in a PDF reader

requires comprehensive testing. Besides the underlying parsers

and renders, the embedded scripting engines are also critical test

subjects. According to Vulners, 17% of the PDF vulnerabilities

submitted to the Zero Day Initiative (ZDI) program in recent

three years are related to the embedded scripting engines [4].

The embedded scripting engine provides the access to the

native functionalities via a set of specialized programming

interfaces (named binding calls [5]), which are implemented

in low-level languages such as C and C++. Since C/C++ does

not provide memory safety guarantee by default, programs

written in C/C++ are more vulnerable to memory-related errors

at runtime [6]. A widely-used technique for testing scripting

engine is fuzzing, which runs strategically generated test cases

for finding vulnerabilities. To effectively fuzz the embedded

scripting engine, both the knowledge of grammar rules and

binding call parameter types are necessary. While the grammar

rules can be automatically extracted from the standard language

specification [7], [8] or learned from the vast number of existing

* Corresponding author.

samples [9], [10], automatically obtaining the parameter types

of binding calls is not an easy task.

On the one hand, there is no standard specification for PDF
binding calls. Different vendors have different implementations

and some of them do not even release public documentation.

To the best of our knowledge, only Adobe provides freely

available API reference manual [11]. Although well-organized

and human-readable, the manual is incomplete. More than

47% of the binding calls are entirely absent. Even for the

documented binding calls, the manual does not enumerate all

possible parameters and their various types.

On the other hand, the existing samples are inadequate for
learning the parameter types of PDF binding calls. Most PDF

test suites [12], [13] mainly focus on testing the parsers and

renders, with little attention paid to the embedded scripting

engines. Even in Mozilla’s PDF.js test suite [14], which contains

over 600 PDF files that embed script code, less than 10% of

the binding calls are covered.

A natural way to infer binding call parameter types is to per-

form differential analysis [15] on execution traces. Specifically,

the target binding call is executed for multiple times, each with

different values of different types. The expected parameter types

are inferred by comparing the observable features extracted

from execution traces. Previous studies use some easy-to-obtain

features, such as error message [16] and path length [17].

However, shallow execution features are not suitable for type
reasoning of PDF binding calls. In fact, for the consideration

of robustness, embedded scripting engines always provide a

great degree of fault tolerance. About 60% of Adobe binding

calls and 70% of Foxit ones implicitly convert type-incorrect

parameters to the expected types with default values assigned.

This makes it very difficult, if not impossible, to find significant

distinction between type-correct executions and type-incorrect

executions in terms of shallow features.

To address the problem, we propose a novel differential

analysis approach based on the execution features with suf-

ficient discrimination that can be used as oracles for type

reasoning. First, we present a concept of type indicators,

which capture how instruction operands vary when passing

different parameter values of expected types. Compared with

error message and path length, type indicators carry more

execution semantics. Then, we develop an algorithm to identify

type indicators from various execution traces. The algorithm

aggregates the differential results of each individual binding
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Fig. 1: Binding calls bridge script code and native code.

call parameters, merging the ones summarized from the may-
type-correct executions (that use parameters whose type may

be correct) and excluding those from the must-type-incorrect
executions (that use parameters whose type must be incorrect).

Finally, the possible types of a binding call parameter are

inferred by checking the occurrence of the expected type

indicators in the corresponding differential results. The inferred

type information is used as fuzzing guidance for generating

more effective test cases.

We implemented a prototype system called TYPEORACLE

and evaluated it on two popular PDF readers (i.e., Adobe

Reader [18] and Foxit Reader [19]). The experimental results

show that TYPEORACLE can effectively infer the parameter

types of binding calls with high accuracy (99% precision

and 96% recall). The inferred type information leads to

significant improvement on code coverage (40% and 35%

increment compared with random testing and fuzzing with API

documentation respectively) and the discovery of 38 zero-day

vulnerabilities (26 of which were certified with CVE numbers).

This paper makes the following contributions.

• We proposed a novel approach to extract observable

features from the execution traces for inferring the

parameter types of binding calls. Our tool is available at

https://github.com/TypeOracle/TypeOracleSrc.

• We systematically studied the differences in parameter

types of binding calls between documentation and imple-

mentation, as well as between different PDF readers. We

found the undocumented and inconsistent binding calls

are likely vulnerable since they may not get fully tested.

• We responsibly analyzed and disclosed all vulnerabilities

found by TYPEORACLE and helped the vendors with the

patch development. All the submitted vulnerabilities have

been confirmed and got fixed.

II. BACKGROUND

PDF readers embed scripting engine to allow the document

creators to programmatically invoke advanced functionalities

when the document readers are viewing the PDF file. The

advanced functionalities include constructing interactive forms,

adjusting document appearance, etc. These functionalities are

provided in native code. To enable the invocation from the

script level to the native level, PDF readers add new internal

objects and their accompanying methods and accessors (getters

Fig. 2: Invocation processing logic of app.launchURL.

and setters) to the scripting engine. Calling these methods or

getting/setting these accessors are dispatched to the underlying

native handlers. These methods and accessors are named as

binding calls. Specifically, a getter is analogous to a function

with no parameter and non-void return value, and a setter
is analogous to a function with a single parameter and void

return value.

Figure 1 shows how binding calls are used as the bridge to

connect script code and native code. When invoking a binding

call via script code, the scripting engine is responsible for

translating the data representation of the parameters and the

native code is responsible for validating the type correctness.

Binding calls share the same translation logic but differ in

the type validation logic. Different binding calls may have

different fault tolerance hence perform different actions for

type-incorrect parameters (e.g. type conversion, using default

value or throwing an exception).

The mainstream PDF readers use Javascript as the scripting

language. The parameter types of binding calls are a subset

of the Javascript data types. These data types can be divided

into two categories: primitive (including Boolean, Number
and String) and composite (including Array and Object).

The composite types are created by using primitive types.

As an example, Listing 1 shows a simplified two-page PDF

file that contains script code, which will be triggered once the

file is opened. Line 5 invokes the launchURL method (that

requires a String parameter and a Boolean parameter) to

open a website or a local file. Line 6 sets 200% zoom level by

writing the zoom accessor (that requires the Number value)

of the doc internal object (this). If a binding call is vulnerable,

an attack could embed the exploit script in a PDF file and

deceive the users to open the file to trigger the vulnerability.

Listing 1: Simplified PDF file that contains script code.

1 1 0 obj <</Pages 2 0 R /OpenAction 4 0 R>> endobj
2 2 0 obj << /Kids [3 0 R 5 0 R] /Count 2 >> endobj
3 3 0 obj << /Type /Page /Parent 2 0 R >> endobj
4 4 0 obj << /Type /Action /S /JavaScript /JS (
5 app.launchURL("http://www.google.com", true);
6 this.zoom = 200; ) >>
7 5 0 obj << /Type /Page /Parent 2 0 R >> endobj
8 trailer << /Size 5 /Root 1 0 R >>
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Figure 2 presents the invocation of app.launchURL.

When the binding call is invoked at the script code layer, the

control is dispatched to the corresponding native handler. The

handler contains three parts of functionalities: type validation,

type conversion and main logic. Type validation checks whether

the type of the given parameter is as required. If so, it invokes

the utility function provided by the scripting engine to translate

data representation (Line 3). Otherwise, it adopts various type

conversion strategies to implicitly convert the given parameter

to the required type (Lines 6-10). We can see that if we provide

the 0th parameter of app.launchURL with a non-string

value, some code in the main logic (e.g., Lines 11-12) will

never get executed.

III. MOTIVATION

To see why inferring binding call parameter types is impor-

tant for testing, we present the discovery of a highly severe

zero-day vulnerability in Adobe Reader as an example. This

vulnerability is found by TYPEORACLE, as listed in No.15 of

Table II. We were awarded $900 for the discovery of this vulner-

ability. Listing 2 shows the minimized triggering code. The first

invocation of the binding call Collab.registerReview
(Line 1) allocates an 8-byte memory region for an internal

structure, which is pointed to by a global pointer. The second

invocation (Line 2) allocates another piece of memory region

and releases the previous allocated one. However, the global

pointer is not updated in time to point to the new memory

region. The released memory region is accessed via the global

dangling pointer during the invocation of the binding call

this.getAnnot (Line 3), causing a use-after-free violation.

Listing 2: Motivating example.

1 Collab.registerReview(this,{},"","","","","","",
false,"",false,"123","","",false,"",1.2);

2 Collab.registerReview(this,{},"","","","","","",
false,"",true,"123","","",true,"",1.2);

3 this.getAnnot(1,"abc");
4
5 //Collab.registerReview(this[Parameter_0],
6 //{}[Parameter_1],""[Parameter_2],
7 //""[Parameter_3],""[Parameter_4],
8 //""[Parameter_5],""[Parameter_6],
9 //""[Parameter_7],false[Parameter_8],

10 //""[Parameter_9],false[Parameter_10],
11 //"123"[Parameter_11],""[Parameter_12],
12 //""[Parameter_13],false[Parameter_14],
13 //""[Parameter_15],1.2[Parameter_16]);

As we can see, the key to triggering the vulnerability

is to feed crafted yet type-correct parameter values to the

registerReview and getAnnot binding calls. We should

note that registerReview is undocumented, neither could

we find its invocation instance in the existing test suites [12]–

[14]. Randomly selecting parameter values without any type

guidance will cause combinatorial explosion, making the testing

very ineffective. The search space will be dramatically reduced

if the parameter types can be inferred.

Through manually reverse-engineering the implementation

of registerReview, we found that it takes more than 17

parameters, 3 of which are critical to the vulnerability. In

particular, it expects a Boolean value for the 8th parameter,

a String value for the 11th parameter, and a Number
value for the 16th parameter. It has different fault tolerance

strategies for individual parameters. Specifically, it tries to

stringify the non-string value passed to the 12th parameter

(e.g., converting to “true”/“false” for Boolean and “[object

Object]” for Object) and numerify the non-number values

passed to the 16th parameters (e.g., converting to 1.0 for true,

123.45 for “123.45” and NaN for the values that cannot be

converted to numbers).

Fault tolerance strategies are binding-call-specific. Different

binding calls have different implicit type conversion rules even

for the same type. For example, while registerReview
implicitly converts non-number values to floats, getAnnot
converts them to integers. The implicit type conversion does not

generate any hint and it does not guarantee that type conversion

(for type-incorrect parameters) has longer or shorter execution

path than data transformation (for type-correct parameters).

As a result, there is no significant distinction between type-

correct executions and type-incorrect executions in terms of

error message and path length. In other words, we cannot use

these two shallow features for type reasoning.

Given the large number of binding call parameters, it is

impractical to manually reverse-engineer their conversion or

extraction methods. There is a need for automatic approach to

type reasoning. The key is to extract execution features with

sufficient discrimination for type reasoning.

Observations. Our automatic solution is inspired by three

observations. First, although different binding calls may have
different processing logic for type-incorrect parameters, they
share the same processing logic for type-correct parameters.

In fact, once the type validation of parameters is passed or

tolerated, the binding calls will invoke the utility functions pro-

vided by the scripting engine to transform data representation.

The utility functions are unique for each type. Second, the data
transformation of each type can be perceived via differential
analysis on multiple executions with different values of the
given type. Essentially, differential analysis provides a light-

weight method to understand how the input is processed by

the program. The instructions whose operand values vary in

multiple executions are related to the input processing. Third,

the type-consistency feature of scripting language provides
valuable type-related knowledge. For an accessor of a built-

in object, the return type of its getter function should be

consistent with the parameter type of its setter function,

since they operate on the same virtual property. Such a feature

can be used for distinguishing between may-type-correct and

must-type-incorrect differential results.

Our Technique. Following the above observations, we propose

an operand-variation-oriented differential analysis approach to

identify binding call parameter types. Specifically, we extract

the variation patterns between operands and parameters for

each data type from the differential results on the accessors of

the type under consideration, and infer the parameter type of
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Fig. 3: Workflow of TYPEORACLE.

a given method by checking the occurrence of the expected

variation patterns in the corresponding differential results. The

variation patterns are formally defined as type indicators as

detailed in the next section.

As an example, the type indicator of String is related to

the mov instruction at address 0x2383ce39 (Figure 2). When

we change the value of a String parameter from “AAA” to

“bbbbb”, the value of the ecx operand in the mov instruction

will change from 0x3 to 0x5 (related to string length). For the

12th parameter of registerReview, we found the String
type indicator appears in the differential result where we feed

the binding call with different String values. Hence it is

inferred as a String parameter. The types of the 9th and 17th

parameters are identified in a similar way. During fuzzing, when

generating the test case that involves the registerReview
binding call, we will assign its parameters with values of

the inferred types. The aforementioned vulnerability is finally

triggered.

IV. METHODOLOGY

Definition. As shown in Figure 4, a type indicator is for-

mally defined as an implication relation between parameter

variation of binding calls and operand variation of program

instructions. The former (denoted as ParVary) is a triple

〈par type, par val1, par val2〉 indicating the value change

from par val1 to par val2 on a binding call parameter

whose type is par type. The latter (denoted as OpdVary) is

a quadruple 〈insn, opd, opd val1, opd val2〉 indicating the

value change from opd val1 to opd val2 on the opd operand

of the insn instruction.

TypeIndicator ::= ParVary → OpdVary
ParVary ::= ParType × ParVal × ParVal
OpdVary ::= Insn × Opd × OpdVal × OpdVal

ExeTrace ::= { Insn × Opd × OpdVal }

Fig. 4: Definitions.

Workflow. The workflow of our methodology is shown in

Figure 3. Given a PDF reader, TYPEORACLE first runs script

within the embedded scripting engine to collect the binding

calls by traversing the internal objects (Section IV-A). Then,

a two-stage operand-variation-oriented differential analysis is

performed on the binary level to identify the most common

type indicator for each primitive data type (Section IV-B). The

identified type indicator is used for inferring the parameter

type of each binding call (Section IV-C). The type information

helps the fuzzer to generate more effective test cases that can

reach deep code that needs to satisfy many conditions to reach

(Section IV-D).

A. Collecting Binding Calls

Collecting binding calls is the first step. The more binding

calls we collected, the more comprehensive the fuzz testing

could be. It should be noted that we cannot rely on Adobe’s

API reference manual to obtain the complete binding call list.

As we can see in Section V-B, around 40% of binding calls in

Foxit Reader are not implemented in Adobe Reader and more

than 47% of binding calls in Adobe Reader are undocumented.

Noticing that binding calls are registered and attached to

built-in objects, we try to collect them by iterating the properties

(accessors and methods) of built-in objects. There are two kinds

of built-in objects: pre-initialized ones created during program

initialization and dynamically-generated ones created during

program execution. The traverse on pre-initialized objects is

straight-forward. It starts from the root element of document

(i.e., this) and recursively uses the for-in statement to iterate

over properties of a given object.

For dynamically-generated objects, we should create them

before iterating their properties. The creation requires invoca-

tion of certain binding calls with appropriate parameters. We

postpone it to the fuzzing period where the parameter type

information is ready. During fuzzing, if the invocation of a

binding call (with type-correct parameters) returns a previously

unseen built-in object, we will iterate through its properties.

B. Identifying Type Indicators

We leverage differential analysis to identify type indicators.

Differential analysis is a technique that studies how the per-

turbations of program inputs have impact on the perturbations

of program outputs. In this work, we treat the parameters of

binding calls as inputs and the execution traces as outputs. For

simplicity, execution trace (denoted as ExeTrace) is defined

as a set of triples 〈insn, opd, opd val〉, recording the invoked

instructions along with operand values. If an instruction has

multiple operands or is invoked multiple times in an execution,

it will correlate to multiple items in ExeTrace.

Given a binding call and one of its parameters under

consideration, we invoke the binding call two times, each time

assigning a different value to the parameter. Let ExeTrace1
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# Type Differential Results Occurrence Type Differential Results Type Differential Results
1 String <0x2383ce39,ecx,0x3,0x5> 105 String <0x2383ce39,ecx,0x3,0x5> Number <0x2383da0d,[eax],0x17,0xb3>
2 String <0x2383da69,eax,0x6,0xa> 14 String <0x2383da69,eax,0x6,0xa> Number <0x2380315b,ecx,0x2,0x3>
3 String <0x2386788c,[ebp-0x14],0x10000,0x1000> 54 String <0x2386788c,[ebp-0x14],0x10000,0x1000> Number <0x2386788c,[ebp-0x14],0x10000,0x1000>
4 String <0x238652cd,edx,0x10,0x20> 25 String <0x238069e3,ecx,0x6,0x8> Number <0x238639f7,eax,0x8,0x9>

Fig. 5: Example of type indicator identification.

Algorithm 1: Select type indicator candidates.
Input : a list of accessors
Output : type indicator candidates

1 Candidates← {}
2 for accessor in accessor list do
3 (getter, setter) ← ObtainGetterAndSetter(accessor)
4 correct type = typeof(getter())
5 for par type in primitive types do
6 〈par type, par val1, par val2〉 ← GetParV ary(par type)
7 ExeTrace1 ← Track(setter(par val1)))
8 ExeTrace2 ← Track(setter(par val2)))
9 Diff ← GetDiff(ExeTrace1, ExeTrace2)
10 if par type == correct type then
11 if Candidates[par type] == NULL then
12 Candidates[par type] ← Diff

13 else
14 Candidates[par type] ← Candidates[par type]∩Diff

15 else
16 Candidates[par type] ← Candidates[par type] \Diff

and ExeTrace2 be the traces of the two executions. The

differential result Diff is calculated according to Equation 1.

It is a set of operand variations involving those instructions

that are invoked in both executions but have different operand

values as response to the different parameter values assigned.

Diff = {〈insn, opd, opd val1, opd val2〉 | conda ∧ condb ∧ condc}
conda : 〈insn, opd, opd val1〉 ∈ ExeTrace1
condb : 〈insn, opd, opd val2〉 ∈ ExeTrace2
condc : opd val1 	= opd val2

(1)

We perform a two-stage process to identify type indicators.

In the first stage, we leverage the type-consistency of accessors

to select type indicator candidates. In the second stage, we

resort to statistics to determine the most common type indicator

for each data type from the candidates. The approach relies on

two assumptions: (1) the accessors cover all primitive types

and (2) the vast majority of binding calls share the same utility

functions to translate data. Section VI discusses the generality

of these assumptions.

Stage 1: Select Type Indicator Candidates. Algorithm 1

describes the selection process. For each accessor, we first

obtain its getter and setter functions (Line 3) and acquire

the correct type of the getter function’s return value via

the typeof operator (Line 4). Then we perform differential

analysis for each primitive type (Lines 5-16). In particular,

we apply the pre-defined parameter variation policy for the

specified type (Line 6), invoking the setter function with

two different values and computing the difference of the two

execution traces (Lines 7-9). The candidates should include

the differential results of type-correct executions (Lines 11-

Algorithm 2:Determine the most common type indicator.
Input : a list of binding calls, type indicator candidates
Output : type indicator for each data type

1 TypeIndicator ← {}
2 for binding call in binding call list do
3 for par type in primitive types do
4 〈par type, par val1, par val2〉 ← GetParV ary(par type)
5 ExeTrace1 ← Track(binding call(par val1)))
6 ExeTrace2 ← Track(binding call(par val2)))
7 Diff ← GetDiff(ExecuteTrace1, ExecuteTrace2)
8 for item in (Diff ∩ Candidates[par type]) do
9 occurrence[par type][item] + +

10 for par type in primitive types do
11 ParV ary ← GetParV ary(par type)
12 OpdV ary ← argmax

item
(occurrence[par type][item])

13 TypeIndicator[par type] = (ParV ary → OpdV ary)

14) and exclude those of type-incorrect executions (Line 16).

Currently, we apply simple yet effective parameter variation

policies: change the value from true to false for Boolean,

change the value from a random number to another random

number for Number, change the value from a random string

to another random string with different lengths for String.

Stage 2: Determine the Most Common Type Indicator. The

selected candidates from Stage 1 are the over-approximation

of the type indicators. We would like to determine the most

common one for each primitive type, such that it works for

the majority of binding calls. As shown in Algorithm 2, we

iterate the binding call list and attempt to match the parameter

with various primitive types (Lines 2-9). For each combination

of binding call and parameter type, we perform the differential

analysis (Lines 4-7) and count the frequency of occurrence

of the candidates (Lines 8-9). Finally, we choose the most

common type indicator for each primitive type based on the

frequency of occurrence (Lines 10-13). If a type has multiple

indicator candidates sharing the same most frequent occurrence,

we choose an arbitrary one as the final indicator.

Example. Figure 5 illustrates how the type indicator of

String is identified. In the first stage, we apply each

primitive type on each accessor. The left and middle parts

of Figure 5 show the type-correct differential results that apply

String on this.zoomType and this.layout. The

right part shows the type-incorrect differential result that applies

Number on this.zoomType. For brevity, we only list four

items in the figure for each differential result. According

to Algorithm 1, Items #1 and #2 of the differential result
a© are treated as the type indicator candidates for String.

Item #3 is excluded since it is contained in a type-incorrect
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differential result c©. Item #4 is also excluded since it is not

contained in all type-correct differential results a© and b©.

In the second stage, Algorithm 2 determines Item #1 as the

most common type indicator for String, since it is the most

frequently occurring item (105 occurrences). The type indicator

〈String, “AAA”, “bbbbb”〉 → 〈0x2383ce39, ecx, 0x3, 0x5〉
means if the value of a String parameter is changed from

“AAA” to “bbbbb”, the ecx operand of the instruction at address

0x2383ce39 will be changed from 0x3 to 0x5.

C. Inferring Parameter Types

Given a binding call, we iterate over its parameters. For

each parameter, we first try to check it with primitive types,

then try to check it with composite types.

Primitive Types. With the help of type indicator, we can

easily judge whether a binding call parameter is of a cer-

tain primitive type. Basically, we apply the parameter vari-

ation (i.e., change the parameter values in two executions)

specified by the type indicator and monitor whether the

expected operand variation (i.e., change of operand val-

ues in two executions) occurs in the differential results.

Take the String indicator (〈String, “AAA”, “bbbbb”〉 →
〈0x2383ce39, ecx, 0x3, 0x5〉) as an example. To judge whether

a binding call parameter is of the String type, we execute the

binding call twice with the parameter value set to be “AAA”
and “bbbbb” respectively and monitor at the break point set on

the address 0x2383ce39 to see whether the value of the ecx
operand is 0x3 and 0x5 accordingly.

Composite Types. Unlike primitive types, we do not have

direct type indicator for composite types. Fortunately, the

embedded scripting engine relies on the underlying primitive

type handlers to resolve composite types. We can use type

indicator of primitive types to recognize composite types. Note

that for a composite value, we should not only identify that

it is an array or an object, but also identify its element types

(for array) or property names and types (for object).

Array. An array can hold many different types of values,

and one can access the values by referring to an index number.

To judge whether a binding call parameter is an array, we

construct an array object for the parameter and try to check

its first element against each primitive type. If we find the

operand variation (as the response to the parameter variation)

matches the type indicator of a certain primitive type, we know

that the parameter is an array and its first element is of the

corresponding primitive type. We repeat type checking for

other elements of the array until there is no type indicator

found or the attempt limit is reached.

Object. An object contains key-value pairs, and one can

access the values by referring to the keys. The keys can not

be obtained by blind guessing. Observe that the binding calls

generally get the desired key of an object from the data segment

of the program. Hence the strings read from the data segment

during the binding call execution are considered as possible

keys. For each of these keys, we try to identify the type of the

corresponding value. Similarly as done for array, we construct

an object, fill it with the specified key and try different values

of different types to compute the differential results. If the

parameter-operand variation pattern of a certain type indicator

appears in the differential results, we can conclude the object

property with the given key is of the corresponding type.

Multiple Parameters. Binding calls usually have more than

one parameters. By default, the type reasoning is conducted

on the parameters one by one according to their occurrence

order. Although a binding call may process the parameters in a

unique order, it is not the common situation. There is a special

case where certain binding calls have a requirement for the

number of the provided parameters. If the requirement is not

satisfied, these binding calls do not process any parameter. We

handle such a situation by increasing the number of parameters

one by one until the type of the first parameter gets identified

or the attempt limit is reached. If the type of the first argument

can be identified finally, the minimum number of parameters

required by the binding call is also obtained.

D. Fuzzing

We develop a simple yet effective generation-based fuzzer

that leverages the inferred type information as guidance.

The inferred type information can also be used by more

sophisticated fuzzers (see Section V-D). The fuzzer repeats the

following steps. (1) Generates script code containing binding

calls. (2) Injects the generated script into base PDF files. (3)

Executes the target PDF reader with the injected PDF files. (4)

Monitors the execution state for crash detection. (5) Once a

vulnerability is discovered, minimizes the triggering test case.

The injection, execution and monitoring are standard. We focus

on the generation and minimization.

Generation. The generation process produces a bunch of

binding calls. For each invoked binding call, the fuzzer feeds

its parameters with values of the inferred types. Such values

can be randomly generated or dictionary items extracted from

the target program. Given the considerable number of binding

calls, it is impossible to test all of their combinations. We

notice that testing binding calls that are semantically related

together may have better performance than the blind mixture.

Since the name of a binding call reflects its semantics, we

treat binding calls whose names share non-trivial subwords

as being semantically related. For two semantically related

binding calls, the fuzzer will try with probability to assign

the same value to their parameters and/or return values that

have the same type. For example, getNthFieldName and

getField are semantically related, since they share the

subword “Field”. The fuzzer may try to use the return value

of getNthFieldName as the value of the first parameter in

getField, since both of them are of the String type.

Minimization. The purpose of minimization is to reduce the

complexity of triggering code. It is achieved by removing

the invocations of binding calls from the test case as much

as possible while keeping the vulnerability triggerable. We

adopt two modes of minimization: eager and incremental.

The eager mode is used by default. It repeatedly reduces by
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half the number of binding call invocations in the test case

until the vulnerability could not be triggered. The incremental

mode is activated when the eager mode no longer works. It

randomly selects one binding call invocation to be removed

along with its semantically related counterparts. By removing

the invocations of semantically related binding calls as a whole,

we can decrease the possibility of invalid reference to the

removed items (i.e., reference errors). For example, if the

invocation of getNthFieldName is removed from the test

case, the invocation of getField will be removed either.

E. Implementation

We implement TYPEORACLE with 9.6K lines of code in

Python, in which 7.6K lines for type reasoning and 2K lines

for fuzzing. The type reasoning component uses Pin [20] to

collect execution traces for differential analysis. The fuzzing

component uses Pywinauto [21] to automate the whole testing

process, WerFault [22] to capture application crash, and

DynamoRIO [23] to collect instruction coverage. We enable

PageHeap functionality [24], which triggers crash immediately

when memory corruption occurs. Hence every crash indicates

potential vulnerability.

V. EVALUATION

We investigate the following research questions in order to

evaluate the effectiveness of TYPEORACLE:

RQ1: How accurate is the identified type information? (Sec-

tion V-B)

RQ2: How inconsistent are the binding calls between docu-

mentation and implementation and between different

implementations? (Section V-C)

RQ3: How effective is the identified type information in

improving fuzzing performance? (Section V-D)

RQ4: How good is the ability of TYPEORACLE for discover-

ing zero-day vulnerabilities? (Section V-E)

RQ1 assesses the accuracy of parameter type inferred by

TYPEORACLE, compared with using shallow indicators (error

message, path length). RQ2 demonstrates the type inconsistency

between documentation and implementation, as well as between

Adobe and Foxit. RQ3 evaluates the fuzzing performance under

different settings. RQ4 evaluates the vulnerability discovery

capabilities of different fuzzers.

A. Experimental Setup

Target Programs. We choose two widely used PDF read-

ers (Adobe Reader v2021.011.20039 and Foxit Reader

v11.2.1.53537) as target programs. We focus on Adobe Reader

and Foxit Reader since they are the top 2 best PDF readers in

Windows. The used releases are the latest versions at the time

of our evaluation.

Computing Resources. The target programs are run in virtual

machines (VMs), using VMware as the hypervisor. The host

machine has 8-core CPU (Intel i7-6700 @ 4.00GHz) and 32GB

memory. The guest VM has one CPU core and 4GB memory,

and uses Windows 8.1 as the operating system.

B. Accuracy of Type Reasoning

Since there is no complete ground truth for the parameter

type of binding calls in different PDF readers, we resort to

the API reference manual provided by Adobe [11] and reverse

engineering to measure the accuracy of type reasoning. The

inferred type is considered to be correct if it is consistent with

that obtained from the documentation. Otherwise, we manually

identify the parameter type by inspecting which type-specific

utility function is invoked by the binding call to translate data

representation of the parameter.

For Adobe Reader, we analyze all documented binding calls

and randomly selected 10% of undocumented ones. For Foxit

Reader, we analyze all common binding calls that are also

implemented in Adobe Reader and randomly selected 10% of

those specific to Foxit Reader. In total, we have 251 binding

calls analyzed for Adobe Reader and 193 for Foxit Reader. In

this dataset, the number of parameters ranges from 0 to 40

(1.9 per binding call on average), and the number of parameter

types ranges from 0 to 5 (1.3 per binding call on average).

Table I shows the analysis result. For each data type, we

record the number of parameters that actually have this type (#

of actual cases), that reports as having this type (# of reported

cases), and that are correctly reported (# of correctly reported).

The precision is calculated by using # of correctly reported to

divide # of reported cases, the recall is calculated by using #

of correctly reported to divide # of actual cases. As we can

see, TYPEORACLE has almost 100% precision and around

96% recall. As a comparison, type reasoning by using error

message provides moderate precision but poor recall (<30%),

while using path length provides both low precision and recall

(<40%). This demonstrates the need for sophisticated feature

(rather than the shallow ones) in type reasoning.

C. Inconsistency of Binding Calls

To further demonstrate the advantage of TYPEORACLE over

the API documentation, we systematically study the binding

call inconsistency between documentation and implementation,

and between Adobe Reader and Foxit Reader. The consistency

of binding calls means two binding calls have the same number

of parameters and the parameters at the corresponding position

have the same type.

We can see from Figure 6a that only 53% of Adobe Reader’s

binding calls are documented, 21% of which have type incon-

sistency with the documentation. Further inspection reveals

that the inconsistency comes from the ambiguous descriptions

and incomplete parameter lists in the documentation. For

example, while the documentation says the Doc.closeDoc
binding call only accepts a required Boolean parameter,

TYPEORACLE inferred an optional Boolean parameter. That

is, the documentation is incomplete for some binding calls.

Figure 6b shows that Foxit Reader shares 42% of binding calls

with Adobe Reader, 36% of which differ in either the number

of parameters or the type of certain parameters.

This indicates that Adobe’s API documentation is not

suitable for obtaining the parameter type of Foxit Reader’s

binding calls, neither is it fully dependable for Adobe Reader.
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TABLE I: Accuracy of type reasoning.

Inferred by TYPEORACLE Inferred by Error Message Inferred by Path Length
Boolean Number String Array Object Total Boolean Number String Array Object Total Boolean Number String Array Object Total

# of correctly reported 112 80 329 16 6 543 3 19 6 2 0 30 8 35 21 4 0 68
# of reported cases 112 80 330 16 6 544 6 19 6 2 0 33 27 189 34 258 31 539
# of actual cases 115 81 337 19 6 558 115 81 337 19 6 558 115 81 337 19 6 558
precision 100.0% 100.0% 99.7% 100.0% 100.0% 99.8% 50.0% 100.0% 100.0% 100.0% 0.0% 90.9% 29.6% 18.5% 61.8% 1.6% 0.0% 12.6%
recall 97.4% 98.8% 97.6% 84.2% 100.0% 97.3% 2.6% 23.5% 1.8% 10.5% 0.0% 5.4% 7.0% 43.2% 6.2% 21.1% 0.0% 12.2%

(a) on Adobe Reader

Inferred by TYPEORACLE Inferred by Error Message Inferred by Path Length
Boolean Number String Array Object Total Boolean Number String Array Object Total Boolean Number String Array Object Total

# of correctly reported 77 53 140 17 3 290 6 26 48 6 1 87 12 31 61 12 2 118
# of reported cases 77 53 140 17 3 290 6 26 48 6 1 87 21 81 67 104 31 304
# of actual cases 78 60 144 18 4 304 78 60 144 18 4 304 78 60 144 18 4 304
precision 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 57.1% 38.3% 91.0% 11.5% 6.5% 38.8%
recall 98.7% 88.3% 97.2% 94.4% 75.0% 95.4% 7.7% 43.3% 33.3% 33.3% 25.0% 28.6% 15.4% 51.7% 42.4% 66.7% 50.0% 38.8%

(b) on Foxit Reader

206
(47%)

235
(53%) 186

(79%)

36
(15%)

13 (6%)

undocumented
documented

consistent

incomplete parameter list

(a) between documentation and implementation

315
126

(42%)
176

(58%) 80
(64%)

37
(29%)

9 (7%)

consistent

(b) between Adobe Reader and Foxit Reader

Fig. 6: Systematic study of binding call inconsistency.

TYPEORACLE performs better than the API documentation in

type identification. Among the vulnerabilities discovered by

TYPEORACLE, 19 involve undocumented binding calls and 2

involve inconsistent ones.

D. Fuzzing Performance
We conduct three groups of experiments to evaluate the

fuzzing performance of different configurations on both Adobe

Reader and Foxit Reader. Each experiment is run for five times,

and each time lasts for 48 hours. Figure 7, Figure 8 and Figure 9

present the experiment results, in which X-axis represents time,

Y-axis represents the number of covered instructions, the lines

represent mean of the five runs. Note that we do not count the

instructions covered by base PDF files themselves, and only

concentrate on the instructions covered by binding calls.

Group 1: Type Guidance. This group of experiments is to

assess the effect of using type information as fuzzing guidance.

Figure 7a presents the experiment results on Adobe Reader,

from which we have two conclusions. First, undocumented

binding calls incur 43.09% coverage increment (comparing

the gray dashed line with the gray dotted line). Second, type

information provided by TYPEORACLE incurs 40.38% coverage

increment than random testing (comparing the black solid line

with the gray dashed line) and 34.88% coverage increment than

that provided by Adobe’s API documentation (comparing the

black solid line with the black dash-dot line). The experiment

results on Foxit Reader are shown in Figure 7b. As we can see,

using the type information extracted by TYPEORACLE incurs

17.09% and 47.28% coverage increment compared with random

testing and using Adobe’s API documentation respectively.

From Figures 7a and 7b, we can also see that using type

information inferred by error message or path length yields

even lower coverage than random testing.

Group 2: Coverage Guidance. We also assess the effect of

using coverage feedback as fuzzing guidance. The fuzzing

process is refracted to leverage the coverage feedback. Specifi-

cally, if a test case covers new paths, it will be preserved for

further mutations in the subsequent iterations. In this group of

experiments, we use the same base PDF file as in Group 1. The

experiment results indicate that coverage guidance has limited

impact on improving fuzzing performance. On Adobe Reader,

it increases the coverage by 4.27% for random testing and by

1.36% for fuzzing with TYPEORACLE (Figure 8a). On Foxit

Reader, it increases the coverage by 3.86% for random testing

and by 1.00% for fuzzing with TYPEORACLE (Figure 8b). This

indicates that type guidance is better than coverage guidance

for fuzzing binding calls in PDF readers. The possible reason

is that the versatile fault tolerance reduces the sensitivity of

code coverage towards the parameter values of different types.

Group 3: Comparison and Integration with State-of-the-
Art Fuzzers. Gramatron [25] is a state-of-the-art grammar-

aware fuzzer that uses grammar automatons and aggressive

mutation operators to synthesize complex syntactically-valid

test cases. We extend Gramatron (denoted as Gramatron+)

to support binding call invocations. We use Gramatron and

Gramatron+ for the generation of scripts injected into the base

PDF file and treat them as standalone baselines. By comparison,

TYPEORACLE achieves 309.18% and 72.56% more coverage

than Gramatron, and 31.56% and 12.65% more coverage than

Gramatron+ (Figures 9a and 9d). This indicates that binding

call invocations (especially with type-correct parameter values)
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(a) Adobe Reader (b) Foxit Reader

Fig. 7: Fuzzing performance of type guidance.

(a) Adobe Reader (b) Foxit Reader

Fig. 8: Fuzzing performance of coverage guidance.

(a) compare with Gramatron on Adobe

(b) integration with Favocado on Adobe

(c) integration with Cooper on Adobe

(d) compare with Gramatron on Foxit

(e) integration with Favocado on Foxit

(f) integration with Cooper on Foxit

Fig. 9: Comparison and integration with state-of-the-art fuzzers.
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TABLE II: Discovered Zero-Day Vulnerabilities.

Product No. Type Status
Discovered By

G+ F C T F+T C+T

Adobe
Reader

1 Buffer Error *** CVE-2019-16462
√© √©

2 Buffer Error *** CVE-2020-3752
√©

3 Buffer Error *** CVE-2020-3754
√©

4 Buffer Error *** CVE-2020-9604
√

5 Buffer Error *** CVE-2020-9605
√ √©

6 Buffer Overflow *** CVE-2020-3807
√©

7 Buffer Overflow *** CVE-2022-28234
√© √

8 Buffer Overflow *** Reported
√© √©

9 Buffer Overflow *** Confirmed
√©

10 Memory Corruption *** CVE-2020-3797
√

11 Memory Corruption *** CVE-2020-9713
√

12 Out-of-bounds Write *** CVE-2020-3795
√

13 Untrusted Pointer Dereference *** CVE-2019-16455
√ √ √ √© √ √©

14 Untrusted Pointer Dereference *** CVE-2019-16460
√

15 Use After Free *** CVE-2022-28234
√©

16 Invalid Memory Access ** CVE-2020-9593
√© √©

17 Invalid Memory Access * CVE-2020-9595
√© √©

18 Invalid Memory Access * CVE-2020-9598
√© √©

19 Memory Corruption * CVE-2020-9711
√

20 Out-of-bounds Read * CVE-2020-3806
√

21 Out-of-bounds Read * CVE-2020-9603
√

22 Out-of-bounds Read * CVE-2020-9705
√

23 Null Pointer Dereference * CVE-2020-9610
√© √

24 Null Pointer Dereference * CVE-2021-21057
√© √

25 Stack Exhaustion * CVE-2020-9611
√ √

26 Stack Exhaustion * PSIRT-12794
√©

27 Stack Exhaustion * PSIRT-12795
√

Foxit
Reader

28 Buffer Overflow *** Confirmed
√©

29 Buffer Overflow *** Reported
√©

30 Invalid Memory Access *** Confirmed
√

31 Invalid Memory Access *** Reported
√©

32 Out-of-bounds Read ** Confirmed
√©

33 Out-of-bounds Read ** Confirmed
√©

34 Out-of-bounds Read ** CVE-2021-38564
√©

35 Null Pointer Dereference * Confirmed
√©

36 Null Pointer Dereference * CVE-2022-26979
√©

37 Null Pointer Dereference * CVE-2022-27944
√

38 Stack Exhaustion * Confirmed
√ √

G+: Gramatron+, F: Favocado, C: Cooper, T: TYPEORACLE

F+T: Favocado+TYPEORACLE, C+T: Cooper+TYPEORACLE√
: discovered within 2 weeks,

√©: discovered within the first 48 hours
* Low Severity ** Moderate Severity *** High Severity

plays more important role than syntax complexity for fuzzing

embedded scripting engines.

Favocado [26] and Cooper [27] are two state-of-the-art

fuzzers that consider binding calls during fuzzing. Favocado

mixes binding calls with various Javascript templates. Cooper

simultaneously mutates both binding calls and PDF page

elements. They extract parameter types from Adobe’s API

documentation, hence cannot handle undocumented and incon-

sistent binding calls. TYPEORACLE can be complementary

with them by providing more complete and accurate param-

eter type information. Compared with the original Favocado,

the integration of Favocado and TYPEORACLE (denoted as

Favocado+TYPEORACLE) increases coverage by 10.19% on

Adobe Reader and by 17.30% on Foxit Reader (Figures 9b

and 9e). Compared with the original Cooper, the integration of

Cooper and TYPEORACLE (denoted as Cooper+TYPEORACLE)

increases coverage by 21.37% on Adobe Reader and by 55.12%

on Foxit Reader (Figures 9c and 9f). The increased coverage

raises the chance of triggering deep vulnerabilities that are

hard to be triggered.

E. Vulnerability Discovery

To evaluate the vulnerability discovery capabilities of differ-

ent fuzzers in the wild, we deploy 2-week fuzzing campaign for

each fuzzer. Gramatron+, Favocado, Cooper, TYPEORACLE,

Favocado+TYPEORACLE and Cooper+TYPEORACLE report 2,

6, 5, 33, 10, 18 unique crashes respectively. Further inspection

on the crash reports result in 38 zero-day vulnerabilities,

as detailed in Table II. Even within the first 48 hours,

TYPEORACLE exposed 18 vulnerabilities, which is 2.57 times

better than the best of other fuzzers. We should note that

Favocado+TYPEORACLE and Cooper+TYPEORACLE split time

between the mutations of binding calls and the mutations of

Javascript templates or PDF page elements, hence expose fewer

vulnerabilities than vanilla TYPEORACLE within the same time

budget.

Case 1: Vulnerability Involving Foxit-Specific Binding Call.
It is a stack exhaustion vulnerability in Foxit Reader, which

involves the binding call App.sendEmail that is specific to

Foxit Reader. This binding call is not presented in Adobe’s API

documentation, neither is it implemented by Adobe Reader.

Fortunately, TYPEORACLE can correctly identify its parameter

is of the String type and guide the fuzzer to effectively

generate crafted yet type-valid test cases. Listing 3 shows the

minimized triggering code. As we can see, if this binding call

is fed with a string containing a considerable number of open

square brackets (i.e., “[”), the vulnerability will be triggered.

Listing 3: Stack exhaustion vulnerability in Foxit Reader.

1 var str = Array(6000).join("[");
2 app.sendEmail(str);

Case 2: Vulnerability Discovered by Favocado + TYPEOR-
ACLE. By integrating Favocado with TYPEORACLE, we found

an out-of-bounds read vulnerability in Foxit Reader. As shown

in Listing 4, the key to triggering the vulnerability is the use of

the toString template (provided by Favocado) and the type-

correct parameter values fed to the Util.scand binding call

(responsible by TYPEORACLE). Both Adobe Reader and Foxit

Reader implement this binding call, however Favocado does

not correctly extract the type information from the Adobe’s

API documentation. Through manual check, we found the

possible reason could be the ambiguous description of the

documentation. It uses “the rules” and “the date” to describe the

semantics of the two parameters, which cannot be intuitively

mapped to data types. On the contrary, TYPEORACLE can

correctly identify the two parameters are of the String type

with the help of type indicator. We should note that during

fuzzing, the selection of Javascript templates and binding calls

are completely automatic without any manual efforts.

Listing 4: Out-of-bounds read vulnerability in Foxit Reader.

1 var obj = {}
2 obj.toString = function()
3 {
4 try
5 {
6 this.color.convert();
7 return "a";
8 } catch (e) {}
9 }

10 util.scand("oyt", obj);
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VI. GENERALITY

In addition to the PDF readers, we also investigate the

generality of the research problem and our methodology

on other host environments, including PDF-XChange [28],

Node.js [29] and Chromium [30]. We found the prevalence of

fault tolerance for type-incorrect binding call parameters (recall

in Section III) and the wide satisfaction of the two assumptions

on accessors and utility functions (recall in Section IV-B).

PDF-XChange is a famous full-featured PDF editor, which

allows users to modify and transform PDF files. It implements

binding calls for both reading and editing PDF files. By using

the parameter type information extracted by TYPEORACLE, we

found 6 vulnerabilities in the latest version of PDF-XChange,

which have been confirmed and awarded $250 bounty.

Node.js and Chromium are the desktop and browser en-

vironments that embed scripting engines. TYPEORACLE can

successfully identify the parameter types of their binding calls.

The inspection on randomly selected 10% of the inferred results

shows the precision is 100% and the recall is around 98%. We

leave the comprehensive research on testing binding calls in

other host environments as future work.

VII. RELATED WORK

Type Recovery. The most relevant work is type recovery of

program variables on binary executable or bytecode [31]. Tra-

ditional approaches infer types by examining the values stored

in registers and memory (i.e., value-based [32]–[34]), by prop-

agating types from instructions and function invocations whose

operands/parameters types are known (i.e., flow-based [35]–

[37]), or by combining both [38], [39]. The inference can

be static [40]–[42], dynamic [43]–[45] or hybrid [46], [47].

The traditional approaches heavily rely domain-expert-provided

rules, hence are brittle and require extensive efforts to maintain.

Recently, researchers propose data-driven approaches that

leverage machine learning for type recovery [48]–[51]. The

type-related instructions are used for learning. StateFormer [50]

pretrains a model to statically approximate the operational

semantics of assembly instructions and transfers the knowledge

to learn type inference rules. SigRec [51] uses type-aware

symbolic execution to explore the instructions of self-generated

smart contract functions and learns the access patterns of each

type to summarize rules for type recovery of parameters.

Conceptually, TYPEORACLE is a light-weight learning-based

dynamic approach to type recovery. Different from the existing

studies, TYPEORACLE tries to infer the type of binding call

parameters that are wrapped and passed through different

language layers. Due to the semantic gap, it is very difficult

to manually summarize type inference rules for script values

from native instructions. In addition, we do not have sufficient

data for pretraining as required by StateFormer, neither can

we generate binding calls on-demand as done by SigRec.

Indeed, TYPEORACLE proposes a new approach to learning

type inference rules from differential analysis.

Fuzzing. Fuzzing is a promising technique for vulnerability

discovery. There exist a large number of studies exploring

different ways to improve the effectiveness of fuzzing [52]–

[59]. File format fuzzers solve complex path conditions by

symbolic execution [60]–[65] or gradient-based search [66]–

[71]. Language fuzzers usually enhance the diversity of the

syntax structure and semantic operations with the help of

grammar specifications [72], [73], historical proof-of-concept

exploits [74], [75], or grammar-aware mutations on the gener-

ated test cases [25], [76]–[79].

API fuzzers manage to extract the interface specifications,

mine the interface association rules and select the appropriate

content as feedback. The interface specifications are usually

obtained from source code [80]–[82], documentation [83],

[84], test suites [85]–[87] or easy-to-obtain features of runtime

executions [16]. In the scenario of fuzzing binding calls in

commercial-of-the-shelf PDF readers, no source code is avail-

able, neither documentation, test suites and shallow execution

features are adequate for type reasoning of parameter types.

Favocado [26] and Cooper [27] are state-of-the-art ap-

proaches that use fuzzing to detect flaws in binding code. They

heavily rely on Adobe’s API documentation to extract parameter

type, hence cannot handle undocumented or inconsistent

binding calls. TYPEORACLE can be complementary with them.

VIII. CONCLUSION

This paper proposes TYPEORACLE, an approach to infer

the parameter types of binding calls for improving fuzzing of

the embedded scripting engine in PDF readers. TYPEORACLE

first performs operand-variation-oriented differential analysis

to extract type indicators that can be used as oracles for

type reasoning. Then, TYPEORACLE generates and executes

test cases based on the inferred parameter types. Through

the evaluation on two popular PDF readers (Adobe Reader

and Foxit Reader), we demonstrated the accuracy of our type

reasoning method and the effectiveness of the inferred type

for improving fuzzing in both code coverage and vulnerability

discovery. TYPEORACLE found 38 zero-day vulnerabilities,

involving undocumented or inconsistent binding calls whose

correct parameter types are previously unknown.
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