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ABSTRACT

The sheer complexity of web applications leaves open a large attack

surface of business logic. Particularly, in some scenarios, developers

have to expose a portion of the logic to the client-side in order to

coordinate multiple parties (e.g. merchants, client users, and third-

party payment services) involved in a business process. However,

such client-side code can be tampered with on the fly, leading to

business logic perturbations and financial loss. Although develop-

ers become familiar with concepts that the client should never be

trusted, given the size and the complexity of the client-side code that

may be even incorporated from third parties, it is extremely chal-

lenging to understand and pinpoint the vulnerability. To this end,

we investigate client-side business flow tampering vulnerabilities

and develop a dynamic analysis based approach to automatically

identifying such vulnerabilities. We evaluate our technique on 200

popular real-world websites. With negligible overhead, we have

successfully identified 27 unique vulnerabilities on 23 websites,

such as New York Times, HBO, and YouTube, where an adversary

can interrupt business logic to bypass paywalls, disable adblocker

detection, earn reward points illicitly, etc.

CCS CONCEPTS

• Security and privacy→Web application security.
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1 INTRODUCTION

The intrinsic complexity of the web ecosystem has created an attrac-

tive attack surface for manipulation and exploitation. Adversaries

have exploited many common flaws that plague various entities in

the ecosystem. Of particular interest are client-side business logic

flaws. If exploited, they may lead to devastating consequences.

As a side effect of exposing partial business logic to the client-

side, by perturbing the internal control flow of events, adversaries

are able to change the intended behavior of a website and cause

various kinds of damages. For example, suppose an application’s

ad delivery mechanism is developed with the intention of playing

a sponsor’s video before streaming the actual content. Malice can

directly skip the first step to circumvent the business model of the

website. Similarly, a website rewards airline miles after a participant

fills out a survey. An attacker can illegitimately earn miles without

finishing the survey. A plausible approach to achieving this is to

disable the condition check and force the execution of rewards logic,

with the help of userscript manager utilities like Greasemonkey [13]

or Tampermonkey [12].

AlthoughOWASP strongly recommends enforcing business logic

on the server-side [8], client-side implementations are commonly

seen in practice. Sometimes, developers find it is easier to do so on

the client-side without thinking too much about the consequences.

But more importantly, it is unavoidable to devise some portion
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Figure 1: Motivating examples

of the logic on the client-side to connect the dots in some scenar-

ios. Web applications nowadays commonly integrate third-party

content or services. In such cases, the client-side logic plays an

important role in coordinating the internal states with those of mul-

tiple parties. For example, a web store may integrate a third-party

payment service and implement the client-side logic to drive the

checkout procedure [40]. For websites that serve a huge number

of anonymous users (e.g., YouTube), it is very expensive to rely on

the server-side to maintain the comprehensive states of all users.

Threat Model.We assume adversaries can manipulate client-side

execution on the fly. For instance, they can trigger web page events

in arbitrary orders. They can modify client-side scripts, change

event handlers, bypass condition checks and alert, and send HTTP

requests to servers. However, we assume they do not have access

to servers so they cannot modify server-side logic.

Problem Statement. Web applications extensively incorporate

code frommultiple sources and thus it is desirable to understand the

risks hidden in the client-side implementations. However, given the

size and the complexities caused by JavaScript (JS) dynamic features

and event-based executions, it is extremely hard to audit client-

side scripts (including those from third parties) and identify the

locations that are vulnerable to business flow tampering. To this end,

we propose a dynamic analysis based approach to help developers

focus on places that are more likely to be real vulnerabilities. By

reporting the locations and the concrete tampering instances, our

method can help developers effectively evaluate if actions should

be taken to either relocate the logic to the server-side, deploy some

runtime attack detection technique or incorporate additional client-

side defense techniques.

In this paper, we investigate the pervasiveness of the client-

side DOM-related business flow tampering vulnerabilities, To the

best of our knowledge, this is the first study to characterize the

impact of the client-side business flow tampering vulnerabilities.

As they are commonly caused by insufficient process validation, we

propose an automatic detectionmethod that addresses the following

challenges:

• Pinpointing places vulnerable to business flow manipulation is

difficult in multi-functional web applications.

• Dynamic web application features should be handled as code can

be injected and generated on the fly.

• Code modification techniques and event-based dynamic execu-

tions make static analysis difficult.

In particular, our method systematically examines websites as

follows: (1) Starting with business operation descriptions, we navi-

gate the website and collect a set of functions that may be relevant

to the business logic. (2) We analyze each candidate function and

look for potential tampering locations, which may perturb the in-

tended behavior if modified. (3) We develop techniques to select

functions that are more likely to be vulnerable and generate tamper-

ing proposals for each selected function. (4) We revisit the website

with the tampering proposals and confirm if the detection results

are indeed business flow tampering vulnerabilities.

To understand the scope and magnitude of the vulnerabilities in

practice, we evaluate ourmethod on 200 real-world websites.We are

able to detect client-side business logic tampering vulnerabilities on

popular websites. Specifically, attackers can bypass paywalls and

read an unlimited number of articles without paying on NYTimes

andWashingtonPost. Detected flaws on Youtube and CWTV enable

attackers to skip in-stream video ads. We also discover a flaw in

the popular reward-earning website InboxDollars; attackers can

illegitimately earn rewards points without finishing the required

steps (e.g. watch videos). In our experiments, we are able to stack

$3.44 reward for an hour attack with a single machine without

watching videos, and if we continue this attack, we could steal

around $80 per day.

In summary, we make the following contributions:

• We investigate the pervasiveness of the DOM related client-side

business flow tampering vulnerabilities.

• We develop a novel dynamic analysis based approach to auto-

matically identifying client-side business flow tampering vulner-

abilities.

• We evaluate our method on 200 popular real-world websites.

With negligible page loading/rendering overhead, we found 27

unique vulnerabilities, where an adversary can interrupt the

business logic to bypass paywall, disable adblock detection, earn

rewards illicitly, etc.

2 MOTIVATION

In this section, we use two real-world examples to show (a) how

business logic can be tampered with on the client-side, (b) why

such vulnerabilities are common, and (c) why identifying these

vulnerabilities is challenging.
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2.1 Bypassing a Metered Paywall

New York Times [37] (NYT) is a well known news publisher. Its

main business model is a metered paywall. It allows users to read

a limited number of articles for free. After that, paid subscription

is required. NYT developers implemented the metered paywall in

March 2011. Within three months, the system generated 224,000

subscribers [29]. With the paywall, after a user reaches the quota

of 5 free articles, a subscription message box with a black-colored

background covering most of the screen will be displayed. Inspired

by NYT’s success, many publishers (e.g., Washington Post, The

Boston Globe, and Chicago Tribune) adopted a similar paywall

system. Fig.1(a) describes part of the simplified paywall implemen-

tation. Each time a news article is accessed, the article page is loaded

as if there was no paywall. The paywall logic is implemented in

a JS file loaded as part of the article page. In the JS file, function

window.webpackJsonp invokes function initMeter, which further

calls checkMeterData (line 4) that implements the paywall logic. In

the function, the meter data is first accessed (line 13). If the current

user exceeds the free quota, function showPaywall (line 16) inserts

the subscription message box. To bypass the paywall, the attacker

can disable the function call checkMeterData(). Consequently, the

subscription message box is elided and the attacker can continue

to access articles for free. A demo video of the attack (hosted on an

anonymous website) can be found at [1].

While OWASP recommends that critical access control should

be performed solely on the server-side to avoid any client-side tam-

pering, NYT’s design simply delivers all the content to the client

and relies on client-side access control to protect the content. Fur-

ther inspection suggests that there are reasons for such a flawed

design. It looks like the paywall system was introduced as a well-

encapsulated and stand-alone add-on (i.e., a self-contained JS file)

to avoid any complex interference with the previous code-base.

Properly implemented access control has to monitor each page load

from the server-side, requiring substantial code changes. Further-

more, the number of free-readers is orders of magnitude larger than

that of the subscribers. A correct design requires maintaining some

profile for each free-reader on the server-side (e.g., the number

of free articles accessed by the reader in a time duration), which

would be much more expensive than the current design that only

needs to maintain subscribers’ profile. The current design relies

on the client-side resources to deal with a large number of free

readers. Such dilemmas are typical, leading to many flawed design

and implementation as shown by our results in Section 5.

2.2 Skipping In-stream Ads

Ads revenue is crucial for business sustainability of streaming ser-

vices like YouTube. Although service providers try to make money

from other sources such as membership subscriptions, it turned

out they often have to scale back and rely mostly on ads [11]. In

particular, YouTube inserts ad videos before and in the middle of

content videos. Recently, it even started showingHollywoodmovies

with ad breaks for free [34]. To implement this, YouTube has to

use client-side logic because it needs to coordinate states among

multiple parties and dynamically load videos from ad networks.

Fig. 1(b) shows a simplified version of the process. The ad videos

are controlled by functions connected by blue arrows, while banner

ads are managed by functions linked by green arrows. Function

ytplayer.load is invoked during page load and eventually invokes

function g.h.start. The function first gets available ads from third-

party ad providers (line 3), then decides if ad videos should be played

by checking if the list this.ads is empty (line 4). If yes, functions

showAd and showVideoAd are called to play the in-stream video ads.

Otherwise, it skips and plays the actual content (lines 7− 8). Filling

up this.ads is by a separate thread in the background, controlled by a

timer. Similarly, function g.h.dispatchEvent is invoked regularly

to deliver ad banners via function showBanner. By enforcing the

false branch outcome at line 4, the ads are skipped and the user can

watch the content video without watching the ads. Note that this

is different from using an ad blocker to block ads. Many modern

web applications are equipped with anti-adblocker mechanism,

including Youtube [38]. Anti-adblockers often work by monitoring

DOM object changes after ads are loaded. If no change is observed

(meaning the ads are not displayed), it gets into a blocking mode

requiring the user to turn off the adblocker. An anti-adblocker has

to be closely coupled with the ad display function. In this case, the

anti-adblocker is part of the function shownAd() (line 5). As such,

by tampering with the JS code (i.e., line 4) directly, the ads, together

with the anti-adblocker logic, are silently evaded.

A key feature of these business models is that the content pub-

lisher (or service provider) wants to ensure certain operations must

be performed on the client-side, which cannot be trusted. This is

not a new problem. There are many other rigorous business logics

such as online shopping, credit card transactions, and online bank

transactions. The key enabling technique in those business models

is to associate a crypto-protected credential (e.g., token) with a

user [5]. The token is shared by the multiple parties in the business

model such that client-side operations can be remotely verified.

For instance, an online shopping application has to interact with

at least a remote payment service provider and a remote product

provider. The payment is recorded by the payment service provider

with the credential of the user. The product provider can indepen-

dently check with the payment service provider to make sure the

payment is in place before the product is sent. Such distributed

integrity protection mechanism is heavyweight and often deployed

in applications where users are properly profiled (e.g., users with

accounts).

However, many web applications serve a vast number of users

with most of them not properly profiled and hence do not have as-

sociated credentials. Nonetheless, the content publishers want their

interest to be protected on those un-profiled users (by limiting their

quota like in NYT or forcing them to watch ads like in YouTube).

Such light-weight business models usually have to rely on client-

side logic to conduct access control. In the YouTube example, ad

networks are designed in such a way that any third party, including

individuals, can bid for an ad slot (on YouTube). Most such third

parties do not have the capacity to support remote authentication

(like the payment service provider in online shopping), which en-

tails saving credentials of individual users. While a better scheme

may be possible for lightweight business models in the future (e.g.,

through some centralized service like Google DoubleClick), client-

side tampering is a realistic and prevalent vulnerability. As shown

in the above examples, such vulnerabilities can lead to financial



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea I Luk Kim, Yunhui Zheng, Hogun Park, Weihang Wang, Wei You, Yousra Aafer, and Xiangyu Zhang

loss. If such attacks were launched at a large scale, websites may

go out of business. Hence, it is in websites’ best interest to identify

such vulnerabilities so that they can take action to secure their

interest, for example, by employing more expensive authentication

schemes, deploying on-the-fly attack detection on the server-side,

or even performing sophisticated client-side obfuscation.

Identifying Client-side Tampering Vulnerabilities Is Chal-

lenging. Client-side code usually comes from multiple parties. In

addition, as suggested by the results in Table. 2, there are 8, 307 JS
functions on average in a single page load. Due to the overwhelming

size and complexities (i.e., JS dynamic features, code minimization,

and obfuscation) of the client-side code, it is impractical for de-

velopers to manually locate the vulnerable points. Developing an

automated tool to expose such problems is necessary.

Therefore, we propose a dynamic search-based approach that

applies a set of pre-defined tampering operations on client-side JS

code. These tampering operations include enforcing branch out-

comes, skipping or repeating functions. To reduce the search space,

we develop an analysis technique to identify JS code elements that

are likely to be business logic related and focus on tampering those.

In particular, we observe that client-side business operations are

usually correlated to DOM mutations. Hence, we intercept such

events and collect the corresponding candidate JS functions. To deal

with the prominent dynamic features of JS code, our technique is

dynamic, modifying the underlying JS engine to instrument the

internal intermediate representations of JS code on-the-fly, instead

of directly instrumenting JS source code. For the aforementioned

Youtube ad banner case, our technique selects 159 code elements

as potential tampering candidates from 8,191 functions. The vul-

nerability disabling ad banners is identified after 10 trials. We have

reported such problem to developers along with the NYT case.

3 SYSTEM OVERVIEW

Fig. 2 provides an overview of our vulnerability detection procedure,

which can be largely divided into three phases.

Site information collection. By recording and inspecting user in-

teractions, we collect basic information about the targeted websites.

In particular, we identify DOM objects that should be monitored

for mutation events and generate browsing automation scripts that

allow automatic website navigation. They will be used as inputs to

the whole procedure. Details can be found in Sec. 4.1.

Identify potential JS code elements to tamper with. We ana-

lyze the website and generate candidates for tampering. In par-

ticular, we monitor DOM mutation events and collect the corre-

sponding call stacks. By inspecting the functions on the stack, we

identify candidate functions that may be business logic related. The

candidates are further ranked based on the estimation how likely

they are vulnerable to tampering attacks. For each candidate, we

generate potential tampering proposals that include the tampering

points and the corresponding tampering operations. We explain

the components and algorithms in Sec. 4.2- 4.4.

Vulnerability scanning by tampering testing. We repeatedly

run the websites according to the generated tampering proposals

to filter out proposals that cannot lead to tampering attacks. In

order to reduce manual efforts to confirm if the outcomes are real

attacks, we develop automated techniques to group test results,

based on DOM event tracking and clustering. Instead of examining

all outcomes, testers only need to check one representative from

each cluster. We produce a vulnerability report to explain the attack

for each exploit. We explain the details in Sec. 4.5.

4 DESIGN

In this section, we describe each component in detail and reason

about our design choices.

4.1 Website Information Collection

Our system requires two pieces of information about the target

website to start the procedure: (a) identifiers of DOM objects that

are related to business logic and (b) browsing automation scripts.

They are collected automatically by recording testers’ interactions

with the targeted websites. In the YouTube example discussed in

Sec. 2, testers can record browsing activities to automate the opera-

tions such as “play video". In the meantime, testers can also specify

elements or regions on the webpage that might be related to the

business logic by simply clicking a button provided by our tool. Our

system automatically collects DOM selectors that identify the DOM

objects involved. Note that our technique does not require good

code coverage of the application. Any test case that triggers the

business model is sufficient. Due to the essential role of business

model, a typical use case would easily cover it. Furthermore, such

manual efforts are one-time. Our tool records the user operations in

an automatic script that can be repeatedly executed in the scanning

phase. Hence, the manual efforts required are minimal.

4.2 Identifying Potential Business Logic
Related Functions

As testers already specified their areas of interest on the web page,

we intercept the mutation events on the DOM objects and collect

the corresponding (asynchronous) call stack. Then, we consider

the functions on the stack that are more likely related to business

logic and give them high priorities. In particular, when mutation

events such as attribute updates, node modifications, or child DOM

tree changes happen, a hook function will be invoked to collect the

function call trace containing the functions that directly/transitively

trigger the changes. We exclude common JS libraries since they

are unlikely tampering vulnerability candidates. We remove them

using a whitelisting approach.

Note that we may observe different call stacks for the same muta-

tion event.We hence construct a call tree, by merging the same func-

tions in stack traces through a preprocessing step. Take the YouTube

case in Fig. 1(b) as an example. The function “showAd” appears in

two different traces. It has two different callees (“showVideoAd” and

“showBanner”) in the two traces. They are hence the two children

of “showAd” in the call tree. All nodes in the call tree of a relevant

DOM mutation are considered candidates and given high priorities.

4.3 Dynamic Page Data Collection

In order to overcome the challenges introduced by JS dynamic

features, in this step, we collect runtime information about the

candidate functions obtained in the previous step. In particular,

we dynamically construct a Business Control Flow Graph (BCFG)
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Figure 2: Approach overview

(a) (b)

Figure 3: Source code and Business Control Flow Graph

(BCFG) of function showAdwith each node representing a ba-

sic block with a unique id followed by the statements in the

block

for each candidate, which abstracts away path conditions that are

unlikely to do with access control in business logic.

4.3.1 Business Control Flow Graph (BCFG). The abstraction fo-

cuses on precluding predicates that are not related to business logic

access control. Specifically, loop predicates are abstracted away as

we consider loop predicates are unlikely to perform access control.

While abstracting away loop predicates, we retain the loop body

which may contain important function calls. Note that BCFG is not

intended to be compiled and executed. It is more a representation

for us to enumerate the possible tampering schemes (called tamper-

ing proposals). After abstraction, BCFG mostly contains the fol-

lowing conditional statements: if-then-else, switch-case, and

conditional ternary operator. A more heavy-weight analysis

(e.g., one that leverages data-flow analysis) may have difficulty deal-

ing with the various complex language features and the extremely

dynamic nature of JS code, and hence is less desirable.

Example. Fig. 3a depicts a simplified version of the function showAd

discussed in the YouTube motivating example. Function “showAd”

renders ads differently based on the ad types (e.g., video ads or

banner ads). At line 4, it checks the ad type (variable “a.o”) and

verifies if it’s a banner ad. If so, the function resumes the player

(“a.dispatchEvent(e)” at line 7) and displays the banner ad by

invoking function “a.o.start” at line 9. Otherwise, the function

plays the video ad by invoking function “a.o.start()” at line 17.

Table 1: Ten features for function ranking

ID Features of Candidate Function fn

F1 Domain similarity between the website URL and fn’s script URL

F2 The loading order of the script containing fn

F3 The number of appearance of fn among all call stacks

F4 The position of fn on its call stack

F5 The collecting order of the call stack with fn

F6 The length of the call stack with fn

F7 The number of times fn is called

F8 The number of times fn’s callee is called

F9 The number of branches in fn

F10 fn’s callee directly mutates DOM (1: yes, 0: no)

Fig. 3b shows the BCFG of the function “showAd”, where each box

represents a block of instructions and each arrow denotes control

flow. In particular, the execution path (𝐵𝐵0, 𝐵𝐵1, 𝐵𝐵4 and 𝐵𝐵6) rep-
resents the video ads delivery procedure. The yellow-colored block

𝐵𝐵6 contains the function call linking to the next function on the
call stack. Besides, 𝐵𝐵6 is control-dependant on the green-colored
blocks (𝐵𝐵0, 𝐵𝐵1 and 𝐵𝐵4). Observe that the loop predicate at line
5 is abstracted away.

In addition to stack traces and BCFG, we collect DOM mutation

types, function execution frequencies, positions in source code, and

the source URL. Such information is needed in the later scanning

phase. Note that we convert the position information (of a code

element) in the row and column format (in the source code) to

its IR offset used inside the JS engine as tampering is performed

by the modified engine. For example, the position of function call

statement “showAd(this)” in Fig. 1 is “row:5, column:9”. We

convert it to “offset:89” with 89 the IR identifier of the statement.

4.4 Tampering Proposal Generation

With the call trees of DOM mutations and the BCFGs of the func-

tions in the call trees, the next step is to generate a set of tampering

proposals that specify the code location to tamper with and the

tampering operation. Although these functions and predicates have

a higher priority compared to others, due to the large search space,

we develop additional techniques to further rank the functions and

predicates. In particular, we first rank functions using a learning-

based method. Then the BCFGs of ranked functions are traversed

in order to derive tampering proposals.

4.4.1 Candidate Function Ranking. As we will show in Section 5,

the number of functions in the call trees of DOM mutations is still

very large. Ideally, we would like to develop a technique to deter-

mine which of these functions are more likely to contain business

access control. However, a solely program analysis based solution

may not have the desirable effectiveness as runtime information

provides strong hints. For example, a business access control JS
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file tends to be loaded before many other JSs; the function that

performs access control often has high execution frequency than

the content delivery function guarded by the access control; the

URL of a business model related JS file tends to share common

domain name as the main page, etc. Unfortunately, these proper-

ties are uncertain and their importance is difficult to determine by

humans. Therefore we propose a learning-based method to predict

the likelihood of a function containing business access control. We

then rank the functions based on their likelihood.

Feature selection. Based on our observation of the properties that

are possibly important, we select 10 features, as shown in Table 1.

We use tampering locations we already know (in a small number

of web applications) to evaluate the significance of the features.

To refine selected features, ANOVA F-test [30] was leveraged. The

null hypothesis of the test is that the feature takes the same value

independently of the output value to predict. As a result, highly

significant features were chosen for our classification task. All

features are normalized individually by subtracting the mean and

scaling to the unit variance.

Estimation of likelihood by learning a classifier. After select-

ing features, a classifier is learned from the training data. As our

data may be biased, we explore using the Balanced Random Forest

(BRF) [14], the weighted-SVM (w-SVM) [10], and the weighted-

Logistic Regression (w-LR) [46], which are more interpretable than

other classifiers (e.g., neural networks) and more robust when they

have a small scale of training data. Balanced Random Forest (BRF)

is an ensemble algorithm by a balanced bootstrapping method. In

particular, we use 1,000 as the number of estimators. In addition, the

gini impurity is used for split criterions. W-SVM (with RBF kernel)

and w-LR use the ratio of class labels in their cost functions and

put more weight on the rare cases to alleviate bias. In the testing

stage, probabilities or regression values are used to estimate the

likelihoods and are ranked by the scores.

To collect the training set for selecting features and learning

the classifier, we first prepare a few confirmed tampering cases.

After the training, we keep using the trained classifier to rank the

candidate functions without any additional training. The result of

the feature selection and learning will be discussed in Sec. 5.3.3.

4.4.2 Tampering Proposal Generation. Tampering proposals are

generated by Algorithm 1. It takes two inputs: 1) the ranked candi-

date functions, where each function has its abstracted BCFG, the

call site to its callees in the call tree, and the URL of the source code.

2) the tampering strategy, which can be either bypass or repeat. Intu-

itively, bypass skips a function call to see if the logic can be altered

in the desired way, while the repeat strategy generates proposals

that repeatedly invoke the callee.

The output is a list of tampering proposals indicating where

and how the execution should be tampered with. In particular, a

tampering proposal consists of (1) the URL of the script containing

the candidate function, (2) the source code offset of the tampering

point, (3) the branch index, and (4) the tampering action. The branch

index specifies a branch outcome that should be enforced. For ex-

ample, a basic block ended with an if statement may have two

outgoing branches. If we want to execute the true branch next, we

assign 0 to the branch index. Otherwise, we set the branch index

to 1. Beside predicates, we may also tamper with the execution of

Algorithm 1 Tampering Proposal Generation

Input:
𝐹 : candidate functions sorted by the likelihood having tampering points. 𝑓 ∈ 𝐹

is a function with the BCFG, the call site to its callee on stack, and the URL of
the script having 𝑓 .

𝑡𝑠 : the tampering strategy, which can be 𝑏𝑦𝑝𝑎𝑠𝑠 or 𝑟𝑒𝑝𝑒𝑎𝑡
Output:

𝑇 : tampering proposal (script_URL, offset, branch index, action) ∈ 𝑇

1: function GenerateTamperingProposals(𝐹, 𝑡𝑠)
2: 𝑇 ← []
3: for each 𝑓 ∈ 𝐹 do

// 𝑓 .𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒 is the call site in 𝑓 to its callee on stack
4: co← GetOffset(𝑓 .𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒)
5: if 𝑡𝑠 is 𝑏𝑦𝑝𝑎𝑠𝑠 then
6: 𝑇 ← 𝑇 ∪ (𝑓 .𝑢𝑟𝑙 , co, none, “disable callee")
7: 𝐵 ← GetControlDepBasicBlocks(𝑓 .𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒)
8: for each 𝑏 ∈ 𝐵 do

// 𝑏.𝑏𝑟𝑎𝑛𝑐ℎ_𝑐𝑛𝑡 is the number of outgoing paths of basic block 𝑏
9: for 𝑖 ← 0 to 𝑏.𝑏𝑟𝑎𝑛𝑐ℎ_𝑐𝑛𝑡 do
10: if HasPath(𝑏, 𝑖, 𝑓 .𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒.𝑏𝑎𝑠𝑖𝑐_𝑏𝑙𝑜𝑐𝑘) then

// skip the existing path from 𝑏 to the callsite
11: continue

// b.branching_stmt is the last stmt before branching in 𝑏 .
12: bco←GetOffset(b.branching_stmt)

// generate a non-existing path starting from b.branching_stmt
13: 𝑇 ← 𝑇∪ (𝑓 .𝑢𝑟𝑙 , bco, i, “force branch outcome")

14: fo← GetOffset(𝑓 )
15: 𝑇 ← 𝑇∪ (𝑓 .𝑢𝑟𝑙 , fo, 0, “disable caller") // disable function 𝑓
16: else

// repeatedly invoke the callee of 𝑓 on stack
17: 𝑇 ← 𝑇∪ (𝑓 .𝑢𝑟𝑙 , co, none, “repeat callee")

non-predicate statements. In this case, the proposal simply specifies

the location of the statement without the branch index information.

The action indicates how the execution should be tampered with

at a particular tampering point. The action can be disable callee,

disable caller, force branch outcome, or repeat callee. Details of each

action can be found in Sec. 4.5.1.

For each candidate function 𝑓 , we first locate the locations where
𝑓 invokes its callees observed on the stack (line 4). For example, in
Fig. 1(b), the invocation statement at line 5 is the call site where

function g.h.start invokes its callee showAd. Although a candi-

date function may invoke multiple callees in the execution, we

separate them and create a trace for each invocation. Therefore,

in our representation, a candidate function only has one call site

to its callee in a trace. Under the strategy bypass, we generate a

proposal that skips the invocation of the callee function (line 6).

Then, we obtain the basic blocks that the call site control-depends

on (line 7), where each basic block returned has a number of outgo-

ing branches (i.e. 2 branches for basic blocks with an if statement,

and 𝑛 branches for basic blocks ended with a switch-case).

Now we want to generate proposals that follow paths that are

different from the one on the stack. To do so, we check if the call

site is reachable through a particular path. Among them, we skip

the path connecting the predecessor block and the call site (line

11). Since we want to explore the remaining paths even the path

conditions are not met, we generate proposals for such paths (line

13) so that we can force the branch outcome.

The algorithm also creates a proposal to skip executing the entire

function 𝑓 (line 15). On the other hand, if the generation strategy
is repeat, the algorithm creates a proposal that repeatedly invokes

the callee function (line 17).
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4.5 Business Flow Tampering Testing

After the tampering proposals are generated, we use a testing-based

approach to confirm the real vulnerabilities. For each proposal, we

leverage the automated script (recorded in the earlier phase) to

load the target website. When the modified JS engine gets a script

specified by the tampering proposal, it mutates the bytecode IR

on-the-fly according to the action specified in the proposal. After

a batch of tests, we gather test results and cluster them based on

similarities. Finally, a tester confirms the success of the testing by

checking the clustered results, which are usually just a few screen

shots showing if the access control is circumvented. In this section,

we first discuss how our system manipulates the business flow.

Then, we describe how we filter out test results using DOM event

tracking and clustering techniques in order to minimize manual

efforts.

4.5.1 Tampering Actions. As mentioned before, there are four pos-

sible actions: disable callee, disable caller, forced branching, and

repeat callee. Next, we explain how they are supported.

Disable callee.When the interpreter encounters the function call

expression specified by the tampering location, it skips the call.

Disable caller.We disable the bytecode generation for statements

in the function, which is equivalent to generating an empty function.

This is because we still need the definition of the disabled function.

Otherwise, the interpreter may crash if the disabled function is

referred to somewhere. Disabling caller can be beneficial because

it disables all function calls from other locations even not in the

call stacks we collected. For example, in Fig. 1(b), if the website

also plays the ad in the middle of playing the content, it can be

turned off by disabling the execution of function showAd, instead

of disabling all the function calls. Furthermore, callback functions

triggered by native functions (e.g. event handler) or by external JS

libraries can only be disabled by this method since call statements

are not accessible.

Forced Branching. The branching target is forcefully set regard-

less of the result of the predicate condition. However, we still inter-

pret the condition expression because it may have sub-operations

(e.g. function calls).

Repeat callee. This tampering action is for duplicating desirable

behavior (e.g. getting rewards) by repeatedly invoking the function.

A naive approach to repeating callee would be to interpret the

function call statement twice. However, business logic normally

requires network interaction between the client and web servers.

So, it is very likely the duplicated requests without interval will

be ignored or considered as an error. We could add intervals by

calling the sleep function at runtime in the JS engine. However, this

may block the single-threaded JS engine and substantially interrupt

the normal execution. To solve this problem, we use setTimeout

function and register the function to be repeated as a callback

function of the timer event.

4.5.2 Test Result Screening. After finishing each test trial, we need

to check if the tampering proposal successfully alters the original

business flow in an intended way. Since our approach relies on

DOM changes, a simple solution is to track the existence of DOM

mutation events. For the NYT example mentioned in Sec. 2, if the

DOMmutation event that is triggered when displaying the subscrip-

tion message box is reproduced in testing, this tampering proposal

is not successful. However, even if the DOM mutation event is not

triggered, it does not mean that this test trial succeeds for various

reasons. For instance, the tampered execution may stop showing

the subscription message box, but it also blocks other DOM objects,

such as the article content. It is also possible that the event is not

triggered because the page is crashed. A more complex scenario is

that the text message disappears, but the black box still exists. Since

there could be countless outcomes depending on web applications,

a tester’s intervention is inevitable to make the final decision. In

order to minimize the manual efforts, we group test results using a

similarity-based clustering technique. Instead of asking testers to

check every result, they can just check one in each cluster. Such

number is smaller according to our experiment in Section 5. Fur-

thermore, for the rest of the testing batches, the tester only needs to

check when a new cluster is found. To be specific, for each test trial,

when the original DOM mutation event is not triggered, we take a

screenshot, get the corresponding HTML source code, and store as

a test result entry. After testing a batch of tampering proposals, we

group the collected test results with a similarity-based clustering al-

gorithm. We use the Structural Similarity Index Method (SSIM) [41]

for screenshots, and Tree Edit Distance (TED) [45] algorithm for

HTML files to compute the structural similarity between DOM

trees. As a metric of the clustering algorithm, we combine the two

similarity scores since they complement each other. Specifically,

clustering with the image similarity metric usually generates fine-

grained clusters especially if a screen changes frequently. In the ad

banner case from the motivating example, screenshots might vary

depending on the screenshot taking time since the video content is

being played; therefore, there would be many clusters. In this case,

DOM tree similarity metric would reduce the number of clusters

if we combine them together. On the other hand, image similarity

shows better performance if DOM structures change dynamically,

such as a front page of newspaper websites loading dynamic con-

tents. As a clustering algorithm, we select Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [18]. The advan-

tage of DBSCAN is it does not require the number of clusters as an

input unlike other algorithms such as k-means. It is an important

factor since we do not have any clues about how many clusters

exist in the test results.

Note that we do not need this step for the 𝑟𝑒𝑝𝑒𝑎𝑡 tampering
strategy, instead, we can simply check if the original DOMmutation

event is triggered after the specified timeout.

5 EVALUATION

5.1 Implementation

Our system1 is implemented in Python and Node.js, and the modi-

fied JS engine is based on V8 6.6.74. The testing module leverages

the Puppeteer library[4], which provides high-level APIs to control

Chromium over the DevTools Protocol[2]. To collect dynamic data

and perform the business flow tampering testing, we instrument the

target JS code by modifying V8 engine [6] in Chromium. In particu-

lar, the instrumentation works as follows: once the V8 engine loads

1We plan to make our system available at https://github.com/yirugi/JSFlowTamper
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Table 2: Statistics of websites from 5 categories

Category
Total JS

Size (KB)
# of JS # of Functions # of Branches

Newspapers 6,313 451 11,403 9,700

Magazine 4,334 258 8,046 6,884

Online Media 4,761 240 7,902 6,737

Surfer Rewards 2,521 132 3,931 3,330

Travel 4,402 220 7,031 5,854

Average 4,814 281 8,307 7,049

Figure 4: Normalized execution overhead

a script file, an Abstract Syntax Tree (AST) is built for each func-

tion and further translated to bytecode by the bytecode generator.

We modify InterpreterCompilationJob class to generate BCFGs

for JS functions after the ASTs are built. The BytecodeGenerator

class is also modified to collect dynamic data and mutate execution.

Comparing to code rewriting approaches [44], we modified the JS

engine because it brings in additional benefits. First, it can easily

handle dynamically generated codes as well as other sophisticated

code modification techniques discussed in Sec. 2. Second, it has

fewer side-effects. For example, it can work with code integrity

checking techniques (e.g., Subresource Integrity (SRI) features [7]).

5.2 Research Questions

We investigate the following research questions in order to evaluate

the effectiveness of our system:

RQ1. How much overhead does our system introduce?

RQ2.Howmany real-world business flow tampering vulnerabilities

can our system find?

RQ3. How well do we estimate the likelihood of vulnerable func-

tions? In particular, what are the results of the feature selection and

the learning algorithm?

RQ4. How effective are tampering testing and result screening?

RQ5. How effective is our system on reducing search space?

To answer these research questions, we run our system on 200

real-world websites. The websites are collected from 5 different cat-

egories in Alexa Top 500 since they use the most common business

models, such as advertisement, paywall, and point reward.

5.3 Experimental Methodology and Results

5.3.1 RQ1: Performance Overhead. Table 2 shows the benchmark

statistics clustered by categories. On average, 8, 307 functions can
be observed in a single page load, which points to the needs of our

approach. We measure three kinds of overhead, the first one is to

collect the stack trace of DOMmutation events, the second is caused

by the instrumentation to collect dynamic page information such

as function execution frequencies, and the third is the tampering

Table 3: Result of our testing on 200 websites

Case

No.
Website T.A.*

Vulnerable

Operation

Case

No.
Website T.A.*

Vulnerable

Operation

C-01 BostonGlobe DCE
Paywall

C-14 CNBC DCE

Anti-Adblock

C-02 NYTimes DCE C-15 CWTV FE

C-03 CWTV DCE Video Ad C-16 CBS FE

C-04 FoxNews DCE Anti-Adblock C-17 SeattleTImes DCE

C-05 NewsWeek DCR
Offer

Notification
C-18 MiamiHerald DCE

C-19 DenverPost DCE

C-06 CBS DCR

Video Ad

C-20 ETOnline DCE

C-07 Youtube FE C-21 AMC DCE

C-08 ETOnline DCE C-22 DallasNews DCE

PaywallC-09 AMC FE C-23 WashingtonPost FE

C-10 CartoonNetwork FE C-24 ChicagoTribune DCE

C-11 Fox FE
Offer

Notification

C-25 Youtube DCE

EtcC-12 PCMag FE C-26 HBO FE

C-13 Business-Standard DCE C-27 Inboxdollars RC

T.A: Tampering Action

*: FE = Forced Branching, DCE = Disable Callee, DCR = Disable Caller, RC = Repeat Callee

testing overhead. To reduce non-determinism caused by dynamic

page content (e.g., ads), we crawl the pages and resources to a local

directory, and then load the local pages and resources with and

without our technique. The former is consider the baseline. We run

each of the 200 websites 10 times and average the execution time.

Fig. 4 depicts the normalized overhead. The first 5 sets of bars show

the overhead observed in each category and the last set denotes

the average overhead. The overhead for the call stack collection

step is 2.41% (90ms) on average. We observed the average number

of DOM mutation events triggered during page loading is 60.55.

Hence, the overhead of handling one mutation event is around

1.5ms. Similarly, the overhead for dynamic page data collection

step is 1.39% (70ms). We do not measure the overhead of executing

tampering proposals for all 200 websites as it causes exceptions and

early termination in many cases, skewing the real overhead. From

the cases that terminate normally, the average overhead is 0.53%

(4ms) which is lower than dynamic page data collection.

5.3.2 RQ2: Effectiveness in Finding Vulnerability. Our technique

discovers 27 vulnerable cases from 23 websites as shown in Table 3.

The first and the fifth columns show the case number while the

second and the sixth columns describe the website. The third and

the seventh columns indicate the tampering action, and the last ones

contain the vulnerable business logic. Observe many websites are

mainstream content publishers. We use the first 5 cases to produce

the training set for the function ranking model. After we trained

the classifier, we found 22 more cases. Besides the NYT case in the

motivation section, we found 4more vulnerable paywall systems (C-

01, 02, and 22 - 24). Instead of using paywall, some websites show

an offer notification popup at the front page. We found 4 cases

that the offer popup can be disabled (C-05, and 11 - 13). From the

websites in online media category, most of the findings are about

skipping the ads before or in the middle of video playing (C-03,

and 06 - 10). We also try to tamper with the protection method for

their ad-related business logic against adblockers. We found 9 cases

(C-04, and 14 - 21) in which the anti-adblock techniques can be

bypassed. Youtube shows ad banners in the middle of video playing,

and this can be skipped by disabling callee (C-25). HBO prompts a

user to provide personal information in order to watch free episodes

right before video starts. This can be skipped by forced branching

(C-26). Inboxdollars gives points to users at the end of watching a

video. Our system found a way to repeat the rewarding operation

using the repeat callee tampering action (C-27). We have uploaded
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Table 4: Function ranking with classifiers
(a)

Case No.

Avg. Rank of Func.

w/ Tampering Point

w-LR w-SVM BRF

C-01 3.5 13.2 2.1

C-02 26.1 16.2 13.4

C-03 4.4 5.7 6.3

C-04 1.4 5.2 1.8

C-05 2 1.5 1.1

Average 7.48 8.36 4.94

(b)

Case

No.

Rank of Func. w/

Tampering Point
Case

No.

Rank of Func. w/

Tampering Point

BRF Random BRF Random

C-06 1 82.5 C-17 3 10.4

C-07 4 90.4 C-18 1 3.8

C-08 8 47.4 C-19 1 9.3

C-09 1 31.4 C-20 9 46

C-10 6 25.2 C-21 4 69.5

C-11 5 19.4 C-22 1 7.1

C-12 1 4.3 C-23 2 63.2

C-13 3 4.6 C-24 1 9.1

C-14 1 5.6 C-25 1 3.5

C-15 1 8.5 C-26 2 12.3

C-16 8 26.3 C-27 11 12.4

Average 3.41 26.92

demos of our findings (recorded screens of the successful tampered

cases) to a private website2. We only use these findings for research

purpose. We have responsibly reported the vulnerabilities to the

victim websites and are in communication with them for possible

defense solutions.

5.3.3 RQ3: Feature selection and learning algorithm. We use candi-

date functions from the first 5 cases in Table 3 as the training set.

For these cases, we test every tampering proposals. If a vulnera-

bility is found, the candidate function containing the tampering

proposal is marked as a positive sample. The others are marked as

negative samples. At the end, we acquire 56 positive samples and

402 negative samples. Using the training set, we perform the feature

selection process for the 10 features in Table 1. We conduct the

ANOVA test to find out which features are significant. As a result,

the first 5 features whose p-value is less than 0.1 are selected (F1,

F4, F5, F7, and F8). Next, in order to check which learning algorithm

works best for our scenario, we tested 3 classifiers discussed in Sec-

tion 4.4.1 using the training set with the 5 websites. In particular,

we learn each classifier on 3 randomly picked websites and test

them on the rest of the websites for its cross-validation. In order

to evaluate the learned models, we order candidate functions for

each website based on the likelihood scores and got the rank of

the first function containing the real vulnerability. We perform this

evaluation test 10 times, then calculate the average rank values,

and Table 4a describes the results of the 3 classifiers, as a result,

BRF shows the best average rank value.

Table 4b shows the function ranks of the 22 successful cases we

find after we apply the trained classifiers (BRF). In order to evaluate

its efficacy, we also select functions 10 times randomly, then get

the averaged rank of functions containing the real vulnerability.

As we can see in the table, the rank values with the classifier show

significantly better performance than the random method. In 10 of

the 22 cases, we find the vulnerability at the first candidate function

using the ranking.

5.3.4 RQ4: Effectiveness of Tampering Testing and Result Screening.

Table 5 shows the effectiveness of tampering testing and test result

screening. The second column shows the total number of tampering

proposals. The third column describes the number of tests until

we find a successful case. The last two columns show the effects

of the test result screening, the number of test results after DOM

2https://sites.google.com/view/tampering-cases/

Table 5: Function ranking and screening results

Case

No.
# of T.P.

# of Tests

to Success

# of Results

after E.S.

# of Results

after Clustering

C-01 264 170 32 4

C-02 191 150 107 17

C-03 176 90 42 16

C-04 150 20 13 4

C-05 208 10 8 2

Average 197.80 88.00 40.40 8.60

C-06 486 10 10 4

C-07 281 20 8 3

C-08 440 20 16 2

C-09 99 10 10 3

C-10 460 20 12 2

C-11 45 20 14 6

C-12 209 10 8 4

C-13 93 10 3 1

C-14 66 10 10 3

C-15 211 10 5 3

C-16 225 50 27 3

C-17 173 10 2 1

C-18 35 10 4 1

C-19 623 10 10 1

C-20 722 20 18 4

C-21 113 10 7 2

C-22 53 10 1 1

C-23 529 10 7 2

C-24 933 10 10 3

C-25 159 10 2 2

C-26 57 10 6 3

C-27 42 19 - -

Average 275.18 14.50 9.05 2.57

T.P.: Tampering Proposal, E.S.: Event-based Screening

event-based screening, and the number of results after similarity-

based clustering. The last column also indicates that the number of

results requiring a tester’s confirmation. In this experiment, we test

10 tampering proposals in one batch. As we mentioned, the first 5

cases are collected from randomly picked candidate functions, and

the rest 22 cases are found with the help of the candidate function

ranking method. In the first 5 cases (C-01 to C-05), the numbers of

tests vary from 10 to 170. The worst case is almost 80% of the total

tampering proposals (C-02), and on average, we test around 50% of

the tampering proposals. The clustering and screening significantly

reduce manual efforts such that testers only need to check 8 results

on average, in comparison to the hundreds proposal executions. In

the 22 cases found later (C-06 to C-27), the number of tests needed

to expose the real vulnerabilities is tremendously reduced using the

function ranking method. The average is 14.50, which is only 5% of

the total tampering proposals. Because of the reduction, testers only

need to check 2.57 results on average. In addition, we investigate the

cases that do not have vulnerabilities, and we observe that testers

have to check 27.93 clusters on average. As checking a cluster is as

simple as inspecting a screenshot, we consider such manual efforts

are manageable.

5.3.5 RQ5: Effectiveness in Reducing Search Space. In order to re-

duce search space, we collect call stacks by observing DOM muta-

tion events, and we remove redundant functions and those from

JS libraries. Moreover, the functions have zero call count during

dynamic data collection are also removed in the tampering proposal

generation. To evaluate the effectiveness of our filtering method, we

collect statistics for the 27 successful cases. Specifically, we collect

the total number of 3 types of data (JS files, functions, and branches)
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Figure 5: Effectiveness in reducing search space

Figure 6: Bypassing adblock detection in cbs.com

we have to consider before and after filtering. Fig. 5 shows the nor-

malized numbers of each data types from 27 cases, and the last bar

denotes the average number. As we can see, we could reduce the

number of each data type substantially. For instance, we need to

investigate 18,658 functions without filtering if we want to find the

case C-22. However, after filtering, there are only 84 functions left,

and this is only 0.45% of the original number. On average, we only

need to inspect 3.18% of the JS files, 1.31% of the functions, or 2.13%

of the branches of those in the original execution.

5.4 Case Study

In this section, we show two case studies to demonstrate how our

system finds the business flow tampering vulnerabilities.

5.4.1 Bypassing Adblock Detection. The website we use in this

case study (C-16) is cbs.com which is one of the biggest television

networks in the US. They provide the subscription-based online

streaming service, and some of their episodes can be watched for

free with video ads from sponsors. They also protect their business

logic using the anti-adblock technique. If a user tries to watch a

free episode with an adblocker-enabled web browser, the website

blocks the actual contents with a warning message.

In order to find if their anti-adblocker technique can be bypassed

using our system, we collect call stacks by tracking the warning

message. After preprocessing, we have 95 functions, which are

only 0.86% of the total functions on the page. There are 225 total

tampering proposals, and after 5 batches, which is 50 trials, we

found the vulnerability. Note that after the screening, only 3 test

results required a manual check.

Figure 7: Repeating point reward in inboxdollars.com

To analyze how our system found the success case, we checked

the vulnerability report. Our system found the tampering location

in function createResourceConfig. Its call stack and code snippet

are described in Fig. 6(a) and (b). It checks the presence of adblocker

using checkForAdBlocker (line 3), and it calls dispatchAdBlocked

to show the warning message (line 7). If we follow the function

checkForAdBlocker, the function testMethod in Fig. 6(c) tries to

inject a script containing "𝑎𝑑" string in its url (line 12) since the

adblock applications usually block those scripts. The tampering

proposal that forces the false branch of the if statement at line 3

succeeds. As shown, our system successfully found a way to bypass

the anti-adblocker technique. With the tampered business flow,

users can watch free episodes without watching video ads, and this

would affect the business model of the website.

5.4.2 Repeating Point Reward. Inboxdollars (C-27) is an online

marketing company that connects consumers and advertisers, and

consumers can earn cash rewards for engaging in a variety of web

activities. According to their website, total cash paid to members

surpasses $50 million in 2016[3]. One of the services they provide

is video reward; they offer points after a user watches a video con-

taining ad. To be specific, when a video player reaches the end of

the video, it increases a progress bar indicating the current reward

status. In this case, we tried to repeat the rewarding activity. In

order to start testing, we first recorded browsing interactions for

logging in and clicking a play button, then gathered a DOM iden-

tifier by selecting the progress bar. The total number of functions

that appeared during testing is 12,642, and we could reduce it to 27

which is only 0.21% of the total number. Our system successfully

found the tampering location with 19 trials out of 42 tampering

proposals. As we discussed in Section 4.5.2, it did not require the

manual work to check the success case.

Fig. 7 illustrates the call stack and the code snippet of the func-

tion doOnBeforeComplete that has vulnerability. Specifically, when

the video is finished, the player calls the function ended, then the

function trigger calls the function doOnBeforeComplete. In the

function, it first checks if the video has finished (line 2). If so, it calls

the function SC_increaseProgress(1) to send a reward request

to its server as well as to increase the progress bar. In order to re-

peat the call, the modified JS enigne added the setTimeout function

containing the name of the function and a parameter, indicating

the function will be called after 5,000 msec. Using this vulnerability,

we could get multiple rewards after watching a single video. As
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mentioned, the rewarded points can be exchanged to actual cash.

This directly causes financial damage to the website. We were able

to stack $3.44 reward points for an hour attack with a single ma-

chine, and if we continue this attack, we would get around $80 per

day. We did not exchange the points we got from the vulnerability,

and we are in communication with Inboxdollars so that they can

deploy defense mechanism.

6 THREATS TO VALIDITY

There are a number of threats to the validity of our conclusion. Part

of our technique (i.e, function ranking) requires training. Although

our training task is quite simple with well defined features, we only

use 458 training samples. While the training set and the test set

are strictly separated and our results indicate the effectiveness of

the trained model, it may be possible that the training set is not

representative and hence the ranking model may not be optimal.

We will study the effect of including more cases in the training

set in our future work. Our results are only acquired on 200 top-

ranked websites as our technique is heavyweight testing-based,

requiring processing thousands of dynamically loaded JS files and

substantial dynamic contents. It is possible that these 200 websites

are not representative. We plan to test on more websites. Checking

the final results requires human efforts. It is possible that we may

miss some real vulnerabilities. We currently only support simple

tampering operations, which may not disclose complex business

model flaws.

7 RELATEDWORK

Our work builds on extensive previous work on automatically test-

ing web applications for vulnerabilities. We briefly describe relevant

approaches, as well as previous works that detect business logic

vulnerabilities in web applications.

Multiple path execution. Our work shares some similarity with

recent work to explore execution paths by forcing program exe-

cution on JS programs [21], native binary programs [28], mobile

apps [16, 20], and kernel rootkits [42]. Forced execution was first

proposed in [42], which brute-forces control-flow at branches to

explore program paths. X-Force [28] moves forward by designing a

crash-free engine. In our work, forcing branch outcome is one of

the tampering actions. However, our technique addresses a much

broader problem. Guided mutation testing for JS web applications

develops generic mutation testing approaches based on common

mistakes made by JS programmers [23, 24]. Our technique mutates

places specific to business models. It features sophisticated methods

to narrow down the candidates of such mutation. Symbolic and

concolic execution based techniques [22, 31–33] have also been

proposed to analyze JS programs. Despite their great potential, han-

dling substantial dynamic features in complex websites remains a

challenge.

Business logic vulnerability detectors. Recently, researchers

have proposed a number of techniques to test web applications for

business logic vulnerabilities [15, 17, 19, 27, 35, 36, 39, 40]. These

techniques focus mostly on the detection of web-based single sign-

on systems and third-party payment systems. Wang et al. are the

first to analyze logic vulnerabilities on merchant websites [40],

and [39] studied logic flaws on popular web single sign-on systems.

These techniques follow an API-oriented methodology that dissects

the workflow in a particular application by examining how indi-

vidual parties affect the arguments of related API calls. Sun et al.

proposes a static detection of logic vulnerabilities in e-commerce

web applications by combining symbolic execution and taint analy-

sis to detect invariant violations of correct payment logic [36]. [15]

proposes an approach to invoking static verification of the safety

property of multiparty online services.

Dynamic JS code analysis. Dynamic analysis is commonly used

to deal with the highly dynamic nature of JS applications. [25]

builds a call graph on client-side codes embedded in server-side

codes as string literals. It handles all possible client-side JS code

variation by symbolically executing server-side code. AjaxRacer [9]

detects AJAX event race errors in JS web applications by testing

pairs of user events that are potentially AJAX conflicting. [43]

proposes a dynamic slicer providing a comprehensive analysis to

identify data, control, and DOMdependencies for client-side JS code.

ConfictJS [26] finds conflicts between JS libraries by identifying

potentially conflicting libraries and testing them with generated

client applications that may suffer from the corresponding conflicts.

8 CONCLUSION

We present a novel dynamic analysis approach that scans web

applications and automatically detects client-side business flow

tampering vulnerabilities. We overcome technical challenges that

hinder the detection process to make the technique practical. Our

evaluation shows that our method has small overhead, and discov-

ers 27 unique vulnerabilities in popular websites, which allow an

adversary to interrupt the business logic of web applications such

as skipping ads at the beginning of videos, bypassing ad blocking

checking and even illicitly earning reward points.

In the future, we will further investigate our approach by cal-

culating precision and recall metrics for known vulnerabilities so

that we can show more accurate coverage evaluation results for

possible missing cases.
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